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Abstract
Crowdsourcing is a computing paradigm where humans are actively involved in a computing task, especially for tasks that are
intrinsically easier for humans than for computers. Spatial crowdsourcing is an increasing popular category of crowdsourcing
in the era of mobile Internet and sharing economy, where tasks are spatiotemporal and must be completed at a specific location
and time. In fact, spatial crowdsourcing has stimulated a series of recent industrial successes including sharing economy for
urban services (Uber and Gigwalk) and spatiotemporal data collection (OpenStreetMap and Waze). This survey dives deep
into the challenges and techniques brought by the unique characteristics of spatial crowdsourcing. Particularly, we identify
four core algorithmic issues in spatial crowdsourcing: (1) task assignment, (2) quality control, (3) incentivemechanism design,
and (4) privacy protection. We conduct a comprehensive and systematic review of existing research on the aforementioned
four issues. We also analyze representative spatial crowdsourcing applications and explain how they are enabled by these four
technical issues. Finally, we discuss open questions that need to be addressed for future spatial crowdsourcing research and
applications.
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1 Introduction

Crowdsourcing is a computing paradigm where humans
actively or passively participate in the procedure of com-
puting, especially for tasks that are intrinsically easier for
humans than for computers. It has attracted extensive atten-
tion from both the academia and the industry [59,69,99,141],
and there have been many successful crowdsourcing plat-
forms such as Amazon Mechanical Turk (MTurk) [2] and
Upwork [28].

With the development ofmobile Internet and sharing econ-
omy, traditional Web-based crowdsourcing has shifted to
spatial crowdsourcing1 (a.k.a. mobile crowdsourcing) [57,
132,206]. As with traditional crowdsourcing, spatial crowd-
sourcing involves three components, tasks, workers and the
platform. Figure 1 shows the typical workflow of spatial
crowdsourcing. The roles of these components are as fol-
lows.

– Tasks Tasks with spatiotemporal constraints (e.g., the
positions and deadlines of tasks) are submitted to the
platform. To complete a task, a worker has to physically
move to the position of the task.

1 The term was coined for the first tine in [132].
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Fig. 1 Key components and workflow in spatial crowdsourcing

– Workers Workers submit their spatiotemporal informa-
tion such as their positions and deadlines to the platform.
Depending on the concrete applications, workers either
are assigned to tasks or can choose tasks by themselves.

– The platform The spatial crowdsourcing platform (plat-
form for short) connects tasks and workers. Its core
functions include assigning tasks to suitable works,
aggregating the results submitted by workers, setting
rewards for workers, and protecting the privacy of the
tasks and workers.

The major difference between spatial crowdsourcing and
Web-based crowdsourcing is that the former requires each
worker to move in the physical world to perform tasks [132].
Hence spatiotemporal information such as location, mobility
and the associated contexts plays a crucial role. Its natural
connection with the physical world makes spatial crowd-
sourcing a computing paradigm for a wide spectrum of daily
applications including real-time ride-hailing services, e.g.,
Uber [17] and Didi Chuxing [4], product placement check-
ing supermarkets, e.g., Gigwalk [8] and TaskRabbit [15],
on-wheel meal-ordering services, e.g., GrubHub [10] and
Meituan [26], and citizen sensing services, e.g., Open-
StreetMap [13] and Waze [19].2

The emphasis on spatiotemporal dynamics calls for new
designs in crowdsourcing theories and systems. The aim of
this survey is to provide a comprehensive review on the core

2 SometimesWaze is also viewed as a crowdsensing application, which
leverages users’ sensor-equipped mobile devices to collect and share
data. Spatial crowdsourcing is a general framework and can subsume
crowdsensing or participatory sensing [132].

algorithmic issues in spatial crowdsourcing from the perspec-
tive of the platform.

Task assignment In practice, a spatial crowdsourcing
platform needs to manage massive tasks and workers every
day. For example, in 2017, Didi Chuxing needs to serve
25million ride requests every day with the registered over
21million drivers, which eventually produces over 70TB
spatiotemporal data every day [21]. Thus, the first chal-
lenge of the spatial crowdsourcing platforms is how to
assign the large-scale tasks to their workers, i.e., task assign-
ment. The platforms usually aims to arrange the tasks
to suitable workers with different optimization objectives
such as maximizing the total number of assigned tasks
or the total payoff of the tasks to their assigned workers,
minimizing the total travel cost of the allocated work-
ers.

Quality control As with most crowdsourcing applica-
tions, results collected fromworkers in spatial crowdsourcing
vary in quality. The aim of quality control is to quantify
the quality of workers and tasks and effectively aggre-
gate results to ensure high-quality task completion. Both
the quality models and the aggregation techniques are tied
to spatiotemporal information, which imposes unique chal-
lenges.

Incentive mechanism Proper Incentive mechanisms help
attract workers to participate in spatial crowdsourcing. Ded-
icated incentive mechanism design is needed because the
spatiotemporal factors and the relative relation between sup-
ply and demand in spatial crowdsourcing are dynamic. For
example, if there are only a few workers in some area, the
tasks posted in this area should provide more reward.

Privacy protection Privacy protection is particularly cru-
cial in spatial crowdsourcing. Spatiotemporal information of
workers, tasks, and intermediate results needs to be properly
transformed to avoid privacy leakagewhile allowing efficient
information processing such as task assignment. Dedicated
techniques and frameworks need to be designed to balance
between the strength of privacy protection and the efficiency
of other spatial crowdsourcing operations.

Contributions over existing surveys There are some
general surveys [34,69,99,141] or tutorials [58,59,142] on
traditionalWeb-based crowdsourcing. Our survey focuses on
the spatiotemporal factors and the new algorithmic designs
on crowdsourcing due to these factors. There are also some
surveys or tutorials on spatial crowdsourcing. For example,
Guo et al. [104] and Tong et al. [203] review task allocation
of spatial crowdsourcing; To et al. review privacy protection
of spatial crowdsourcing in Chapter 7 of [195]; Zhang et
al. [239] review the incentive mechanisms in spatial crowd-
sourcing; Zhao et al. [244] give a brief survey on spatial
crowdsourcing, which only sketches out a few representa-
tive works. Compared with [104,195,239,244], we provide
a comprehensive and holistic review on the latest progress
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Table 1 A timeline of milestone papers of spatial crowdsourcing

Year Reference Influence

2012 [132] First work of spatial crowdsourcing

2013 [78] First work of static task matching (see
Sect. 3.3) in spatial crowdsourcing

2013 [133] First work of quality control (see Sect. 4)
in spatial crowdsourcing

2014 [196] First work of privacy protection (see
Sect. 6) in spatial crowdsourcing

2014 [63] First work of general spatial
crowdsourcing platform

2015 [144] First work of dynamic task planning (see
Sect. 3.6) in spatial crowdsourcing

2016 [205] First work of dynamic task matching (see
Sect. 3.4) in spatial crowdsourcing

2016 [204] First experimental work of dynamic task
matching in spatial crowdsourcing

2018 [210] First work of incentive mechanism (see
Sect. 5) in spatial crowdsourcing

2018 [201] First work of privacy protection in
dynamic scenario

on spatial crowdsourcing research. Chen et al. [57] also con-
duct a survey on spatial crowdsourcing. However, our work
ismore systematic in classifying the techniques and also cov-
ers the most recent literature in the last 3 years. Tong et al.
give a tutorial on spatial crowdsourcing in [206]. This survey
is its holistic and systematic extension and update.

Bibliography methodology We select papers primarily
from top venues in the database communities such as SIG-
MOD, VLDB, ICDE and TKDE. We also include some
representative works from the spatial and mobile comput-
ing communities since some important algorithmic issues in
spatial crowdsourcing also stemmed from there (although
as the topic of crowdsensing, which has a slightly different
focus). In Table 1, we list the milestone papers during the
development of spatial crowdsourcing and their influence on
this research area.

In the rest of this survey, we first present the preliminaries
in Sect. 2 and review the representative research on the four
core issues in spatial crowdsourcing in Sects. 3–6. We then
study some killer applications of spatial crowdsourcing in
Sect. 7 and discuss future challenges and opportunities in
Sect. 8. Finally, we conclude in Sect. 9.

2 Preliminaries

This section introduces the models of tasks, the models of
workers, and the practical constraints that will be frequently
used in this survey.

2.1 Taskmodeling

In spatial crowdsourcing, a task is also known as a spatial
task [132], a crowdsourced task [97], a spatial crowdsourced
task [96], or a request [154]. The user, who submits the
task on such platforms, is called task requester [186] or
requester [132]. In real-world applications, a task can be a
taxi calling request in ride-sharing platform (e.g., Uber [17]
and Didi Chuxing [4]), a takeout order in food delivery plat-
form (e.g., GrubHub [10] and Seamless [27]), a last-mile
delivery request in urban logistic platform (e.g., UPS [18]
and FedEx [6]), and other general tasks like taking photos
of landmarks and appliance repairment in Gigwalk [8] and
TaskRabbit [15]. For example, the number of food delivery
orders has been increased to 10billion in China by the end
of 2017 [226]. The main reason is that crowdsourcing these
tasks can usually result in higher quality task completion
(e.g., low latency) at a lower cost due to the large scale of
workers.

After receiving the task issued by the requester, the plat-
form will know the following major information about this
task.

– Arrival time indicates when the task is submitted.
– Location represents the spatial information of the task.
Some task (e.g., a taxi calling request or a food delivery
order) contains two types of locations, origin (pickup
location) and destination (delivery location). To com-
plete such a task, a worker needs to first come to the
origin and then take to the destination.

– Deadline represents the expired time of the task.
– Radius restricts a circular range whose center is the loca-
tion of the task.

– Reward is the payoff to the worker if he/she completes
the task. The amount of reward is either directly decided
by the requester or determined by the platform based on
its incentive mechanisms.

A few other attributes of tasks are also considered in some
studies, e.g., required skills [66] (the requirement of skills to
perform the task), arrival rate [84] (the probability of appear-
ance in a unit time), etc.

Similar to crowdsourcing [141], the tasks in spatial crowd-
sourcing can be also classified into two kinds in terms of
granularity: i.e., macro-tasks and micro-tasks. A macro-task
in spatial crowdsourcing often involves a wider space and
requires more time to complete. In contrast, a micro-task in
spatial crowdsourcing usually involves much fewer locations
and needs less time to complete. For example, mapping a city
belongs to a macro-task whereas geotagging a landmark of
this city is a micro-task. As most existing studies in spatial
crowdsourcing focus on micro-tasks, this survey also mainly
restricts to the scope ofmicro-tasks and only briefly discusses
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Table 2 A summary about the attributes of tasks and workers used in the four core issues

Task Worker

Arrival time Location Deadline Radius Reward Arrival time Location Deadline Radius Capacity

Task assignment � � � � � � � � � �

Quality control � � � � � � � � � �

Incentive mechanism � � � � � � � � � �

Privacy protection � � � � � � � � � �

the issues of task assignment, quality control and incentive
mechanism in macro-tasks.

2.2 Worker modeling

In spatial crowdsourcing, a worker is also known as a spatial
worker [33], a crowd worker [205], a mobile worker [112], a
service provider [204], or an agent [55]. To join the platform
and perform tasks, a worker usually shares his/her spatiotem-
poral information with the platform. The commonly used
attributes include:

– Arrival time indicates when the worker appears on the
platform.

– Location is the spatial information of the worker.
– Deadline restricts the leaving time of the worker.
– Radius represents a circular range whose center is the
location of the worker.

– Capacity is the maximum number of tasks that he/she
can perform before the deadline.

From historical data, the platform will also know the
acceptance ratio of the worker [237] (the percentage of
accepted ones among all the assigned tasks) and the repu-
tation of the worker [108,218]. Some works also consider a
few other attributes of workers, e.g., his/her skills [98,187],
travel budget [97,245], etc.

Table 2 summarizes the attributes of tasks and workers
used in the four core issues in spatial crowdsourcing that we
will discuss in the subsequent sections.

2.3 Practical constraints

The main characteristic of spatial crowdsourcing is the
spatial factors (e.g., location) and temporal factors (e.g.,
deadline). These factors are important when the platform
makes task assignment, controls the quality, designs the
incentivemechanism, and protects the privacy. Thus, existing
works usually consider three types of constraints to satisfy the
dynamics in spatial crowdsourcing, i.e., spatial constraints,
temporal constraints and other constraints. We list the
major ones as follows.

Spatial constraints

– Range constraint: the task assigned to aworker is within
his/her restricted range; the worker assigned to a task is
within its restricted range.

– Travel budget constraint: the total travel cost of the
worker should be under his/her travel budget.

Temporal constraints

– Deadline constraint: the task will expire after the cor-
responding deadline; the worker will leave the platform
after his/her deadline.

– Real-time constraint (a.k.a. instantaneous constraint):
once a task appears, aworkermust be assigned to it before
the next task appears.

Other constraints

– Capacity constraint: the number of tasks assigned to a
worker cannot exceed his/her capacity.

– Invariable constraint: once a task is assigned to a
worker, the allocation between the task and the worker
cannot be changed.

– Reward budget constraint: the total payoff to the
assigned workers should be under the reward budget of
the requester.

– Skill constraint: each required skills of a task is covered
by the skills of at least one worker.

– Reliability constraint: the probability of the task being
performed correctly should be larger than a threshold of
reliability.

Some of these constraints are more widely used in all four
core issues, e.g., range constraint, deadline constraint and
capacity constraint. Some other constraints are only used in
specific scenario, e.g., skill constraint is often used when a
task has a specific requirement about the skills of the assigned
workers.
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3 Task assignment

Task assignment is considered as the most fundamental chal-
lenge in spatial crowdsourcing [57,206]. This is because all
the other core issues in spatial crowdsourcing are connected
with task assignment, as we will discuss in the next several
sections. In this section, we first define the task assignment
problem (Sect. 3.1) and then categorize existing research
from two dimensions (Sect. 3.2): the arrival of input (i.e.,
static or dynamic) and the algorithmic assignment model
(i.e., matching or planning). Accordingly, we introduce exist-
ing research from four categories: static matching (Sect. 3.3),
dynamicmatching (Sect. 3.4), static planning (Sect. 3.5), and
dynamic planning (Sect. 3.6). Finally, we summarize these
studies in Sect. 3.7.

3.1 Generic definition

Task assignment aims to arrange tasks to suitable workers
for different objectives. A generic definition of task assign-
ment in spatial crowdsourcing is as follows.

Given a set of tasks and a set of workers, task assignment
refers to the process to make an arrangement between tasks
and workers for specific objectives, while satisfying spatial
constraints, temporal constraints and (or) other constraints.

In terms of objectives, there are mainly two types of opti-
mization goals: total utility and total cost. Below are the
general definitions of utility and the cost.

– Utility It is a value that measures the utility of an assign-
ment between a task and its assigned worker. Utility can
be a constant value of 1, the reward of the task, the accep-
tance ratio of the worker, or even the reward times the
acceptance ratio. Accordingly, the total utility will rep-
resent the total number of performed tasks [78], the total
acceptance ratio of the workers [237], the total rewards
of the assigned tasks [242] or the total expected rewards
of the assigned tasks [205,221].

– Cost It is a value to measure the cost of the assignment
between a task and its assigned worker. Cost can be the
travel distance (time) of the worker to the task, or the
delay of the task from its arrival time to the completion
time. Accordingly, the total cost will represent the total
travel distance of the workers [204] or the total delay of
all the tasks [64].

Stable assignment is another objective for certain spatial
crowdsourcing applications [224,242]. It is motivated by sta-
ble marriage [94], which aims to minimize the number of
unstable pairs (a.k.a. blocking pairs). A pair of task and
worker (except its current assigned worker) is an unstable
pair if the following conditions are satisfied: (1) The task
prefers the worker more than its current assigned worker; (2)

Fig. 2 Matrix overview of task assignment research

theworker prefers the taskmore than his/her current assigned
task.

3.2 Categories of existing research

Figure 2 summarizes the taxonomy of task assignment
research. Existing studies can be categorized from two
dimensions: the arrival scenario, which can be static or
dynamic; and the algorithmicmodel, which can bematching
or planning.
Arrival scenario: static versus dynamic

– Static In the static scenario (a.k.a. offline scenario), the
platform is assumed to know all the spatiotemporal infor-
mation of the tasks and workers at the beginning, which
includes the arrival times and locations of tasks andwork-
ers.

– Dynamic In the dynamic scenario (a.k.a. online sce-
nario), the spatiotemporal information of either tasks or
workers is only known upon their arrival.

Intuitively, the dynamic scenario is more practical yet more
challenging than the static one, since tasks andworkers in the
dynamic scenario need to be assigned based on only partial
information.
Algorithmic model: matching versus planning

– Matching In the matching model, task assignment is
often formulated as a bipartite graph-based problem.
Workers and tasks can be represented by the vertices in
the bipartite graph and utility or cost between a worker
and a task can be denoted by the weight of the edges.
Then the problem is to obtain an optimal matching in the
bipartite graph.

– Planning In the planning model (a.k.a. scheduling
model), task assignment aims to plan a route for each
worker to perform a sequence of tasks.
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Before introducing solutions to each category of task
assignment research, we list the evaluation metrics for a task
assignment algorithm. In terms of efficiency of the algorithm,
time and memory costs are used. In terms of effectiveness,
approximation ratio and competitive ratio are standard to
assess the theoretical guarantee of the offline algorithms and
online algorithms, respectively. Specifically, the approxima-
tion ratio represent the effectiveness that an offline algorithm
can guarantee in the worst case. The competitive ratio repre-
sents the effectiveness that an online algorithm can guarantee
but under various analysis models. In the task assignment
research in spatial crowdsourcing, the following analysis
models are covered:

– Adversarial order model (AO) It considers the worst
case of the online algorithm.

– Randomordermodel (RO) It considers the average case
of the online algorithm, i.e., the arrival order of inputs is
uniformly sampled from all possible permutations.

– I.I.Dmodel (IID) It assumes that the dynamically arrived
vertices (i.e., workers or tasks) are identical and indepen-
dent distributed but unknown to the algorithms.

– Known I.I.Dmodel (KIID) It also assumes that workers
or tasks are i.i.d., but the algorithmknows thedistribution.

– known adversarial distribution model (KAD) It is a
generalizationof theKIIDmodel.However, each task and
worker in this model is sampled according to an arbitrary
distribution, which is known to the algorithm. Different
fromKIIDmodel, the distributions of the tasks (workers)
may be different from each other.

Now we review existing studies in four categories: static
matching (Sect. 3.3), dynamic matching (Sect. 3.4), static
planning (Sect. 3.5), and dynamic planning (Sect. 3.6).

3.3 Static matching

This subsection reviews research on task matching in the
static scenario, where information of workers and tasks is
known before assignment. We discuss existing studies in
terms of different objectives, which include utilitymaximiza-
tion (Sect. 3.3.1), cost minimization (Sect. 3.3.2), and stable
matching (Sect. 3.3.3).

3.3.1 Utility maximization

In practice, utility can represent the constant value 1 (i.e.,
the number of assigned task) or the payoff to the worker.
Accordingly, the objective of utility maximization is equiva-
lent to either maximizing the total number of assignments or
the total payoff. We discuss existing solutions to these two
objectives separately.

Maximizing total number of assignments Solutions to
static matching problem that maximizes the number of
assigned tasks are either exact orGreedy-based approximate
algorithms.

– Exact Since task matching can be formulated as a bipar-
tite graph, the maximum cardinality bipartite matching
of the graph yields the assignment with the maximum
total number. Hence exact algorithms (e.g., Hungarian
algorithm [52]) can optimally solve the problem.Alterna-
tively, Kazemi et al. [132] reduce the bipartite graph into
an instance of themaximumflow problem [32] and use the
Ford–Fulkerson algorithm [93] to obtain the exact result.
They also consider some practical issues. For example, a
task may have fewer workers around and hence it should
be assigned with higher priority. Therefore, the authors
borrow the idea of location entropy [74] to represent this
priority. Location entropy measures the total number of
workers near that location as well as the relative pro-
portion of their future visits to that location. Another
heuristic strategy is to iteratively assign the task to its
nearest worker (i.e., Nearest Neighbor Priority (NNP)).

– Greedy based To reduce the computation cost of exact
solutions (i.e., Hungarian [52] and Ford–Fulkerson [93]
algorithms), various Greedy-based methods are pro-
posed. Both [199] and [212] maximize the total number
while considering a budget constraint. They extend the
idea of location entropy [132] to region entropy, i.e.,
tasks in the spatial region with fewer workers inside
(i.e., less region entropy) should have a higher priority to
be assigned. Then they greedily make assignment based
on the current highest priority. Alfarrarjeh et al. [33]
further design several partition-based distributed imple-
mentations (e.g., spatial partitioning approach (SPA)) to
improve the scalability of the solutions.

Maximizing total payoff Solutions to static matching that
maximizes the total payoff are also either exact or Greedy-
based approximate algorithms.

– Exact To et al. [197] extend the problem in [132]
by assuming that a worker with better performance
should be paid more. Accordingly, an instance of static
matching can be reduced to an instance of maximum
weighted bipartite matching [52]. Thus the Hungarian
algorithm [52] can still be utilized to obtain an exact
solution. Considering worker distribution and travel cost,
they also reduce the original matching problem to the
minimum-cost maximum weighted bipartite matching
problem.

– Greedy based Similarly, the Greedy-based algorithms
are proposed to improve the efficiency of exact algo-
rithms such as the Hungarian algorithm. She et al. [183]
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Table 3 Comparison of existing solutions to task assignment as a static matching problem

Method Objective Constraintsa Time complexityb Ratio

GR [132] Maximizing total number Deadline, range – Optimal

SP-WR-A [33] Range – Heuristic

Temporal [199] Deadline, range, budget – Heuristic

Greedy-GEACC [182] Maximizing total payoff Capacity O(n3) 1/(1 + Cmax)

g-D&C [66] Deadline, range, skill, budget – Heuristic

ADAPTIVE [66] Deadline, range, skill, budget – Heuristic

Basic [197] Deadline, range – Optimal

IDA [213] Minimizing total distance – – Optimal

CA [213] – – Heuristic

Allocation [48] Capacity O(n3) 2.5

Swap Chain [156] Minimizing maximum distance Capacity O(R · |T |(|T | + |W |)) Optimal

Gale–Shapley [94] Minimizing #blocking pair Capacity O(|T ||W |) Optimal

Closest Pair [72,228] Capacity O(|T ||W |2) Optimal

Chain [224] Capacity O((|T | + |W |) · (logO(1) |T | +
logO(1) |W |))

Optimal

aIn the column of constraints, we use “–” to represent that the method supports no aforementioned constraints in Sect. 2.3. We use “range” to denote
range constraints, “deadline” to denote deadline constraints (see Sect. 2.3 for more details)
bIn the column of time complexity, we use “–” to represent the case when time complexity is not given in the paper. We use T and W to denote the
set of tasks and the set of workers, respectively. Hence, n is max{|T |, |W |} and R is a parameter such that R � |T ||W |

consider the conflicts among tasks and propose an
approximation solution with ratio 1

1+Cmax
, where Cmax

is the maximum capacity of workers. Cheng et al. [66]
study the settings where a task has requirements on the
worker’s skills under a budget constraint. Assuming a
batch mode [199], they propose a Greedy-based method
and further develop a new algorithmwith an adaptive cost
model.

3.3.2 Cost minimization

Since the platform tends to servemore tasks, the actual objec-
tive is often to find a matching with maximum cardinality
and minimum cost. Hence the corresponding static matching
problem can be transferred to the minimum-cost maximum-
flow (MCMF) problem [32]. The problemcan again be solved
by exact algorithms such as theHungarian algorithm [52] and
successive shortest path algorithm (SSPA) [81]. To improve
the efficiency, Hou et al. [213] leverage indexing and I/O
optimization techniques. Specifically, they introduce incre-
mental SSPA-based exact solutions with R-tree indexing. A
heuristic algorithm is also designed to achieve better effi-
ciency with an approximate result.

Bei et al. [48] study static matching with cost minimiza-
tionwhere eachworker can be assigned to atmost two tasks at
any time. The problem is formulated as a variant of the three-
dimensional matching (3DM) [101]. A matching in 3DM is
a triple which consists of two tasks and one worker. To solve
the problem, they first pack every two tasks and thenmake an
arrangement between the workers and the pairs of tasks after

packing. This two-phase algorithm achieves an approxima-
tion ratio of 2.5 when the number of tasks is exactly twice of
the number of workers.

Long et al. [156] also focuses on the static matching with
cost minimization. Differently, they want to find a matching
with maximum cardinality which minimizes the maximum
travel cost among all the assignments. They devise a scalable
algorithm called swap chain to efficiently get the optimal
solution.

3.3.3 Stable matching

Some other research studies the static stable matching prob-
lem in spatial data. Solutions to the stable marriage problem
can be applied to static stable matching. For example, the
problem can be solved by the Gale–Shapley algorithm [94],
which takes O(|T ||W |) time when T is the set of tasks and
W is the set of workers. Another intuitive solution is to
iteratively select the closest pair from the remaining tasks
and workers [72,228]. To improve the efficiency, Wong et
al. [224] reduce the concept of “mutual nearest neighbor” to
the bichromatic mutual NN search problem, and propose an
NN search-based chain algorithm with a time complexity of
O((|T | + |W |) · (logO(1) |T | + logO(1) |W |)).

3.3.4 Summary on static matching

Table 3 lists the representative studies on static matching.
Solutions to the staticmatching problemare the basis ofmany
other more complex task assignment problems in spatial
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Fig. 3 An example of one-sided dynamic matching, where only tasks on the right appear dynamically. The information of workers on the left is
known in advance

Fig. 4 An example of two-sided dynamic matching, where both workers and tasks appear dynamically and the assignment is made immediately

crowdsourcing. Cheng et al. [67] conduct a comprehensive
evaluation on mainstream static matching algorithms. They
conduct the experiments on the open datasets [9] collected by
the gMission and the toolbox called SCAWG [198] for spa-
tial crowdsourcing. According to their experimental results,
LLEP [197] is a good choice to maximize the total utility and
NNP [132] is closely effective but more efficient.

Besides, solutions to the static matching problem can be
also extended for the dynamic scenario via the batch-based
mode [132,199]. In the batch mode, an arrangement is made
between tasks and workers in a fixed time interval (i.e.,
a batch). However, the response time of tasks or workers
tends to be long in the batch mode. Hence, online algorithms
directly designed for dynamic matching are desired, which
we present below.

3.4 Dynamic matching

This subsection reviews task matching research in the
dynamic scenario, where the information of either tasks or
workers is unknown beforehand. Dynamic matching can be
further classified into one-sided dynamic matching and two-
sided dynamic matching. In one-sided dynamic matching,
only the information of workers or tasks is unknown (e.g.,
parcel delivery), while in two-sided dynamic matching, the
information of both workers and tasks is unknown (e.g., on-
demand taxi dispatching). Figures 3 and 4 show the examples
of one-sided and two-sided dynamic matching, respectively.
As in static matching, we review prior works based on their

objectives: utility maximization (Sect. 3.4.1), cost minimiza-
tion (Sect. 3.4.2) and stable matching (Sect. 3.4.3).

3.4.1 Utility maximization

As in static matching, the utility between a task and its
assigned worker in dynamic matching can also represent
a constant value 1 and the payoff of the task. Since some
real-world applications of dynamic matching allow work-
ers to decide whether to accept the assigned task or not, the
utility in dynamic matching can additionally represent the
accepted ratio of the worker and further the payoff times the
acceptation ratio, i.e., expected payoff.Accordingly, themain
objectives for dynamic matching with utility maximization
include maximizing the (expected) total number of assigned
tasks and maximizing the (expected) total payoff of assigned
tasks.
Maximizing total number of assignmentsDynamicmatch-
ing with this objective is also known as the online bipartite
matching problem. Most research along this line focuses on
the one-sided online bipartite matching problem [50,82,91,
102,121,129,159], while relatively a few have investigated
two-sided online bipartite matching [120,208,220].

(i) Solutions to one-sided scenarioWe discuss solutions
optimized for worst-case performance and average perfor-
mance, respectively.

– Optimized forworst-caseperformanceKarp et al. [129]
propose three algorithms, i.e.,GREEDY, RANDOM and
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Fig. 5 Procedure of offline-guide-online technique

RANKING. GREEDY assigns a new task to an arbi-
trarily chosen available worker. RANDOM differs in
that the worker is uniformly sampled. The competitive
ratios of GREEDY and RANDOM are both 0.5 under the
adversarial order model. RANKING is a two-phase algo-
rithm. In the first phase, a randompermutation ofworkers
is picked and it represents the priority (i.e., rank) of the
workers. In the second phase, a newly appeared task will
be assigned to the available worker with the highest rank.
RANKING yields a competitive ratio 1 − 1/e ∼ 0.632
under the adversarial order model. The ratio is proven to
be the lower bound of any online algorithm [50,82,102].

– Optimized for average performanceWhileRANKING
has achieved the lower bound under the adversarial order
model, it is unknown whether it is the most effective
under other models such as the random order model and
the i.i.d model [102]. Feldman et al. [91] devise the sug-
gested matching algorithm with a higher ratio 0.67. The
idea is to guide the online algorithm by offline solutions
(“offline-guide-online”). Figure 5 shows the procedure of
the offline-guide-online technique. Specifically, they first
predict the spatiotemporal information of tasks andwork-
ers (i.e., learn the distribution). Next, an offline matching
algorithm is used to obtain the optimal matching by using
the predicted inputs. Finally, they use the offline match-
ing to guide the online matching policy.When a new task
appears, an eligible worker is usually sampled according
to the chosen probability of this assignment in the offline
solution. Following the same idea, Manshadi et al. [159]
improve the ratio to 0.702 using Monte Carlo sampling.
Jaillet et al. [121] apply linear program as the offline
algorithm and obtain the best-known competitive ratio
of 0.706.

(ii) Solutions to two-sided scenario. Many solutions to
the two-sided scenario are built upon those to the one-sided
scenario.

GREEDY can be applied to two-sided scenario and
achieves a competitive ratio of 0.5 under the adversarial order
model. Its effectiveness can be further improvedby twometh-

ods, the randomized primal dual technique [120,220] and the
offline-guide-online technique [208].

In particular, the charging-based framework [128] can be
extended to achieve better effectiveness. Its idea is to increase
the probability of each potential assignment whenever a
worker or a task appears on the platform. At the deadline
of each vertex, the algorithm will determine the final assign-
ment of this vertex based on the probability.Wang et al. [220]
extend the framework with the water-filling algorithm and
obtain a better ratio of 0.526 thanGREEDYunder adversarial
order model. Huang et al. [120] extend RANKING into the
two-sided scenario where the vertex with higher rank has a
larger probability to be matched. The extended RANKING
algorithm achieves the currently best-known competitive
ratio of 0.554.

Tong et al. [208] apply the offline-guide-online technique
to a different setting where a worker can move in advance
to other locations so as to increase the potential number of
assignments. Their solution first predicts the spatiotempo-
ral information of tasks and workers and guides workers to
locations where there will be tasks in the future, and then
makes assignments based on an offline guide. The proposed
POLAR and POLAR-OP algorithms yield competitive ratios
of 0.399 and 0.47 under the i.i.d model.
Maximizing expected total number of assignmentsWhen
workers are allowed to reject the assigned tasks, the objective
above is replaced by maximizing the expected total number
of assigned tasks.

Hassan et al. [111] use multi-armed bandit [176] to model
the problem and apply a contextual bandit algorithm [143]
to determine the assignments. Zhang et al. [237] focus on
predicting the acceptance ratio of workers in taxi dispatching
via machine learning techniques. Note that tasks rejected by
workers can be considered as new tasks and can be reassigned
to other workers.
Maximizing total payoff Dynamicmatching thatmaximizes
the total payoff can be considered as an online vertex-
weighted bipartite matching problem, where the weight of
each edge in bipartite graph is represented by the weight of
one-side vertex. There are also two versions of this problem,
i.e., one-sided [31,51,194] and two-sided [84,194].

(i) Solutions to one-sided scenario In [31], Aggar-
wal et al. study the problem where the information of
tasks is known. A perturbed Greedy algorithm is proposed
which achieves a competitive ratio 1 − 1/e ∼ 0.632 under
adversarial order model. Specifically, the algorithm first per-
turbs each weight of vertices identically and independently
by a function ψ(x) = 1− e−(1−x). Then it sorts the vertices
in the order of decreasing perturbed weights, which forms a
rank. Finally, it utilizes the strategy of RANKING [129] to
make the final decision. The authors prove that no random-
ized algorithm can obtain a higher ratio than 0.632 under the
adversarial order model. Ting et al. [194] devise a random-
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ized algorithmGreedy-RT to achieve the ratio of 1
2e ln�Umax+1�

under the adversarial order model, where Umax denotes the
upper bound of the utility between a worker and a task. They
first randomly sample a threshold and then match the new
vertex to any existing vertex whose weight is higher than the
threshold. Under the known i.i.d model, Brubach et al. [51]
propose the VW algorithm with a competitive ratio of 0.729.

(ii) Solutions to two-sided scenario For the two-sided
scenario, Ting et al. [194] prove that Greedy-RT can still
achieve the ratio of 1

2e ln�Umax+1� under the adversarial order
model. They also prove that no randomized algorithm can
achieve a higher ratio than 2

�logUmax�+1 under the adversarial
ordermodel. Dickerson et al. [84] design an algorithmADAP
basedon the offline-guide-online technique. Theyfirst solve a
linear program benchmark and then use the offline solution to
simulate the online matching procedure. Finally, they prove
that the competitive ratio of ADAP is 0.343 under the random
order model.
Maximizing expected total payoff Similar to the case of
maximizing the expected total number of assignments, this
thread of research assumes the worker can reject the task
with some probability. In this case, the weight of edges in the
bipartite graph is determined by both the payoff of the task
and the acceptance ratio of the worker. Hence the problem
is similar to the online edge-weighted bipartite matching
problem. Again, there are two versions of this problem, i.e.,
one-sided [51,83,134,139] and two-sided [84,205].

(i) Solutions to one-sided scenario Prior works either
borrow the idea from the secretary problem [92] or use the
offline-guide-online technique [51,83].

Korula et al. [139] first propose a Sample-And-Price algo-
rithm that has a competitive ratio of 0.125 under the random
order model. The idea is to iteratively find a global assign-
ment by GREEDY whenever a new vertex appears, and then
sample an assignment with some probability. Kesselheim et
al. [134] are also motivated by the secretary problem and
devise the BOM algorithm, which improves the competitive
ratio to 1/e ∼ 0.367under the randomordermodel.Different
fromSample-And-Price,BOMskips the first �(|W |+|T |)/e�
vertices and finds a global optimal matching by the Hungar-
ian method.

Solutions which use the offline-guide-online technique
to obtain more promising results. In [51,83], the authors
first formulate the predicted instance with linear program-
ming (LP), and then solve it by existing LP solver (e.g.,
CPLEX [20]). They finally use the result of the LP solver
to guide the online matching procedure. Under the known
i.i.d model, the SW algorithm [51] can achieve a compet-
itive ratio of 0.632 and an optimized algorithm EW [51]
can obtain a ratio of 0.705. In [83], the authors exploit
the fact that a worker tends to be reassigned a new task
right after he/she finishes the last task, and define the
online matching with (offline) reusable resources problem.

They propose a Monte Carlo simulation-based algorithm
ADAP(γ ), which achieves a competitive ratio of 0.5 under
the known adversarial distribution model.

(ii) Solutions to two-sided scenario In [205], the authors
extend the Greedy-RT algorithm [194] and prove its compet-
itive ratio still holds. They also borrow the idea of secretary
problemanddevise a two-phase framework. In thefirst half of
vertices, GREEDY is used to determine the final assignment.
In the other half of vertices, they first find a global matching
and then determine the final assignment based on the global
matching. Their proposed algorithms achieve competitive
ratios of 0.25 and 0.125 under the random ordermodel. Dick-
erson et al. [84] further use the offline-guide-online technique
to improve the ratio to 0.295. Song et al. [186] study a variant
of the problem for applications such as InterestingSport [11]
and Nanguache [12], where workplaces, workers and tasks
should all be considered. For example, InterestingSport needs
to find suitable trainers (i.e., workers) and book the cor-
responding sports facilities (i.e., workplaces) for its users.
The problem is modeled as online trichromatic matching. A
threshold-based randomized framework is proposed to solve
the problem with a ratio of 1

3e ln�Umax+1� .
Summary Most of the efforts on dynamic matching with
utility maximization can be modeled as a variant of online
bipartite matching problem. The offline-guide-online tech-
nique [91] is useful to achieve good competitive ratios,
e.g., [84,208]. However, the common assumption is that the
spatiotemporal distribution of either tasks or workers is com-
pletely predictable, which may be impractical in real-world
applications.

3.4.2 Cost minimization

The cost between a task and a worker can represent the travel
distance (time) between the location of the worker and the
location of the task, or the delay of the task from release
time to completion time. Hence cost minimization indicates
that tasks will be served more rapidly. We discuss solutions
that minimize the total travel distance and the total delay
separately.
Minimizing total travel distance dynamic matching with
this objective can be modeled as a variant of one-sided
online minimum bipartite matching, where tasks dynami-
cally appear on the platform. Existing solutions can be clas-
sified into two categories, Greedy [127] and HST based [46,
161] algorithms.

– Greedy based Kalyanasundaram et al. [127] propose
Permutation, a (2n − 1)-competitive ratio algorithm,
where n is the number of workers to be matched. They
also introduce Greedy, which greedily assigns a task to
its closest worker (i.e., nearest neighbor) and randomly
picks one if there is a tie. Despite its efficiency, Greedy
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has a competitive ratio of 2n − 1 under the adversarial
order model. In order to distinguish from the GREEDY
algorithm [129] on utility maximization, we call this
nearest-neighbor-based Greedy method as NN-Greedy.

– HST based Hierarchically separated tree (HST) [223]
is a special type of tree metrics. Meyerson et al. [161]
consider a randomized Greedy algorithm, HST-Greedy,
by extending the Permutation algorithm [127] into HST
structures, and it yields an expected competitive ratio of
O(log3 n) on any metric space. The O(log3 n) bound is
further improved in [46] by the HST-Reassignment algo-
rithm, which is O(log n)-competitive on 2-HST metrics,
and thus O(log2 n)-competitive on general metrics.

The above studies focus on analyzing the competitive
ratios in worst cases i.e., under the adversarial order model.
To evaluate the performance of these algorithms in practice,
Tong et al. [204] present a comprehensive experimental com-
parison of some representative algorithms. The experiments
show that the NN-Greedy, which has always been consid-
ered as the worst method due to its exponential competitive
ratio (2n−1), significantly outperforms the others in terms of
effectiveness. In particular, the worst case in the adversarial
order model of NN-Greedy has a constant competitive ratio,
3.195 under the random order model.
Minimizing total delay The delay of a task is the duration
from its release time to its completion time. Unlike mini-
mizing the total travel distance, minimizing the total delay
is a group of problems where once a task appears, it can
be kept waiting for potential better assignments instead of
being matched immediately. The cost incurred is the sum
of travel distances between matched worker–task pairs (the
travel cost), and the sum of the tasks’ response time (the
waiting cost). The rationale is to trade off between the cost
of instant assignments and that of waiting for better assign-
ments.

– Solutions to one-sided scenario Emek et al. [88]
present a randomized algorithm with competitive ratio
O(log2 n+ logΔ) ∼ O(log2 n) on n-point metric spaces
with the longest distance Δ. Ashlagi et al. [42] prove the
same ratiowith a simpler analysis andAzar et al. [43] fur-
ther improve the ratio to O(log n) under the adversarial
order model.

– Solutions to two-sided scenario Chen et al. [64] study
the problem of minimizing the maximum delay among
all matches while both tasks and workers dynamically
appear. They present an HST-based algorithm MMD-
HST, which has better effectiveness than a Greedy-based
baseline.

Summary Dynamic matching with cost minimization is
usually modeled as an online minimum bipartite matching

problem. There are mainly two kinds of solutions to this
problem, Greedy-based and HST-based algorithms. Com-
pared with Greedy-based algorithms, HST-based algorithms
tend to have better competitive ratios in worst-case analysis.
However, since NN-Greedy is demonstrated to be effective
on both synthetic and real datasets [204], it is still an open
problemwhether the competitive ratio of NN-Greedy is arbi-
trarily bad (i.e., 2n − 1) under other analysis models (e.g.,
random order model or known i.i.d model).

3.4.3 Stable matching

Many studies on dynamic matching have integrated the
preferences of either workers or tasks into their optimiza-
tion objectives. For example, some studies [83,205] aim to
maximize the total utility obtained fromall successful assign-
ments, where the utility represents the workers’ preference
on payoff.

Zhao et al. [242] first consider the preferences of both
workers and tasks in dynamic task matching and formulate
the task assignment problem as a variant of online stable
matching problem. The online stable matching problem is
first studied by Khuller et al. [135]. They prove that the
“first come, first served” method (FCFS-Greedy) produces
O(n log n) blocking pairs on average and O(n2) blocking
pairs in worst case. Zhao et al. [242] study a more difficult
version since they also aim tomaximize the total utility at the
same time. They use the offline-guide-online technique [91]
andpropose anLP-based algorithmLP-ALG,which achieves
a competitive ratio of 1− 1/e ∼ 0.632 for maximizing total
utility with no more than 0.6|E | blocking pairs under the
known i.i.d model.

3.4.4 Summary on dynamic matching

Table 4 compares the representative research on dynamic
matching with three objectives (utility maximization, cost
minimization and stable matching). As is shown, the com-
petitive ratio is often constant in solutions to utility max-
imization and different analysis models are often used to
obtain a better result. However, fewer studies focus on mini-
mizing the total cost or online stable matching. In particular,
most research [46,88,161] uses the adversarial ordermodel to
analyze the effectiveness of the algorithm in the worst case,
which is more difficult to obtain a promising result. Thus, it
is still an open problem whether it is possible to design an
algorithmwith a constant competitive ratio under the random
ordermodel or the known i.i.dmodel. Finally, it isworthmen-
tioning that many research (e.g., [145,208,242]) conducts the
experiments of dynamic matching on the datasets collected
byDidiChuxing [4].DidiChuxing has so far already released
many open datasets in their GAIA initiative [22]. These real
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Table 4 Comparison of existing solutions to task assignment as a dynamic matching problem

Method Objective Constraints Time complexitya Analysis modelb Ratio

GREEDY [129] Maximizing total number One-sided, range O(n2) AO 0.5

GREEDY [102] One-sided, range O(n2) RO, IID 0.632

RANKING [129] One-sided, range O(n2) AO 0.632

Suggested matching [91] One-sided, range O(n) IID 0.632

MC sampling [159] One-sided, range O(n) IID 0.702

Random Lists [121] One-sided, range O(n2) IID 0.706

GREEDY [120] Two-sided, range, deadline O(n2) AO 0.5

Water-filling [220] Two-sided, range O(n2) AO 0.526

Ext-RANKING [120] Two-sided, range, deadline O(n2) AO 0.554

POLAR-OP [208] Two-sided, range, deadline O(n2) IID 0.47

Contextual bandit [111] Maximizing expected total
number

Two-sided, range, deadline O(n2) – Heuristic

Hill-climbing [237] Two-sided, range O(n3) – Heuristic

Perturbed Greedy [31] Maximizing total payoff One-sided, range O(n log n) AO 0.632

VW [51] One-sided, range O(n2) KIID 0.729

Greedy-vRT [194] Two-sided, range O(n2) AO 1
2e ln�Umax+1�

ADAP [84] Two-sided, range, deadline O(n2) KIID 0.343

Sample-And-Price [139] Maximizing expected total
payoff

One-sided, range O(n3) RO 0.125

BOM [134] One-sided, range O(n4) RO 0.367

SW,EW [51] One-sided, range O(n2) KIID 0.632,0.705

ADAP(γ ) [84] Two-sided, range O(n) KAD 0.5

TGOA [205] Two-sided, range, deadline O(n4) RO 0.25

TGOA-Greedy [205] Two-sided, range, deadline O(n3 log n) RO 0.125

NADAP [84] Two-sided, range, deadline O(n) KIID 0.295

Permutation [127] Minimizing total distance One-sided O(n3) AO 2n − 1

NN-Greedy [127] One-sided O(n) AO 2n − 1

HST-Greedy [161] One-sided O(n) AO O(log3 n)

HST-Reassignment [46] One-sided O(n2) AO O(log2 n)

Stilt-walker [88] Minimizing total delay One-sided – AO O(log2 n)

Saturated [43] One-sided – AO O(log n)

TGM [41] One-sided – AO O(log n)

MMD-HST [64] Minimizing maximum
delay

Two-sided – AO O(log n)

FCFS-Greedy [135] Minimizing #blocking pair One-sided O(n2) AO O(|E |)
LP-ALG [242] Maximizing total payoff

and minimizing #blocking
pair

One-sided, range O(n) KIID 0.632 and 0.6|E |

aIn the column of constraints, we use “range” to denote range constraints, “deadline” to denote deadline constraints (see Sect. 2.3 for more details)
bIn the column of time complexity, we use “–” to represent that the time complexity is not given in the paper. We use n to denote the maximum
value between the number of tasks and the number of workers
cIn the column of analysis model, we use “–” to represent that the paper has no competitive analysis under specific models
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datasets can usually be used to validate the performances of
the dynamic matching algorithms for different objectives.

3.5 Static planning

Task assignment in the real applications such as ride shar-
ing and food delivery is a planning problem, where a route
(i.e., a sequence of tasks) should be planned for workers.
This subsection reviews studies on static planning, which fall
into two categories, One-Worker-To-Many-Tasks Static
Planning (Sect. 3.5.1), which plans a route for one single
worker, and Many-Workers-To-Many-Tasks Static Plan-
ning (Sect. 3.5.2), which plans routes for multiple workers.

3.5.1 One worker to many tasks

In One-Worker-To-Many-Tasks Static Planning, most stud-
ies aim to find a route for one worker such that the number of
performed tasks is maximized under the travel budget con-
straint. This problem is closely related to the orienteering
problem [214]. The major differences include: (1) the utility
value of each matching is often zero or one, and (2) the end
vertex of the route is not given. Thus, the utility often repre-
sents a constant value 1 in the majority of works [78,80] and
only [73] considers the more general utility (i.e., payoff). We
discuss existing works based on their objectives.
Maximizing total number of assignments Deng et al. [78]
first study static planning which maximizes the total number
of performed tasks under the travel budget and deadline con-
straints. They name it theMaximum Task Scheduling (MTS)
problem and prove its NP-hardness. There are two kinds of
solutions to the this problem: exact and Greedy-based algo-
rithms.

– Exact To address theMTS problem, Deng et al. [78] pro-
pose several exact solutions. Theyfirst propose a dynamic
programming algorithm, MST-DP, with a time com-
plexity of O(n22n) and a space complexity of O(n2n).
They further propose a branch-and-bound-based algo-
rithm MST-BB, which has a time complexity of O(n!)
and a space complexity of O(n2).They also propose sev-
eral pruning strategies to improve the actual running time.

– Greedy based Deng et al. [78] also propose sev-
eral Greedy-based heuristics, including nearest-neighbor
heuristic (NNH), most promising heuristic (MPH) and
least expiration time heuristic (LEH). Among these solu-
tions, NNH is the most efficient and effective. To achieve
a better trade-off between efficiency and effectiveness,
they further present beam search heuristic (BSH) [80]. It
expands the cardinality of candidate set to a given thresh-
old instead of one in NNH. BSH then invokes MST-BB
with this candidate set to select proper tasks. Even though

BSH is less efficient than NNH, it is more effective in
experimental evaluations.

Maximizing total payoff Costa et al. [73] study static plan-
ning which maximizes the total payoff. They assume that a
workermay be on his/her preferred path and iswilling to con-
sider the trade-off between payoff and the travel cost. Due
to its NP-hardness, they propose a detour-oriented heuris-
tic (DOH) to find all non-dominated routes and recommend
them to the workers.

3.5.2 Many workers to many tasks

Although it is already NP-hard to plan a route for a single
worker, a few efforts have explored Many-Workers-To-
Many-Tasks Static Planning. Research on Many-Workers-
To-Many-Tasks Static Planning mainly focuses on maxi-
mizing the general utility (e.g., satisfaction score [97,181],
payoff [113]) while only [79] aims at maximizing the total
number of performed tasks.
Maximizing total number of assignments deng et al. [79]
extend their maximum task scheduling problem to the
multiple workers version. They devise a new three-phase
framework called global assignment and local scheduling
(GALS). The first two phases are static matching and One-
Worker-To-Many-Tasks Static Planning. The last phase is to
refine thematching resultwith the updated routing result. The
last two phases repeat until no more tasks can be performed.
The complexity of GALS is O(n4), which is relatively high
in practice. Thus, they propose the local assignment local
scheduling (LALS) algorithm based on the similar idea to
improve the efficiency.
Maximizing total payoff/satisfaction In practice, the util-
ity function can represent the satisfaction score [97,181]
between workers and tasks or the payoff of the worker by
performing the task [113]. There are mainly two types of
solutions to this problem, greedy based [97,181] and local
ratio based [113,181] algorithms.

– Greedy based She et al. [181] propose the problem of
Utility-aware Social Event-participant Planning (USEP),
which maximizes the total satisfaction of all the users
considering the travel budget constraint. They propose a
Greedy-based algorithm, RatioGreedy, which considers
the utility–cost ratio of each worker–task pair and adds
the pair with the largest ratio into the planning. Gao et
al. [97] study a variant of the problem, where tasks may
impose different skill requirements on the workers. They
first form a set of worker with minimum cardinality to
cover the skill requirement of tasks and then greedily
assign theworkerwith the largest satisfaction to the tasks.

– Local ratio based Themain idea of the local ratio frame-
work [47] is to first decompose the problem into several
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Table 5 Comparison of existing solutions to task assignment as a static planning problem

Method Objective Constraints Time complexitya Ratio

MST-BB [78] Maximizing total number Deadline O(n!) Optimal

NNH [78] Deadline – Heuristic

GALS [79] Deadline O(n4) Heuristic

LRBA [113] Maximizing total utility Travel budget – 5

DeDPO [181] Deadline, travel budget O(n3) 0.5

SCUP [97] Deadline, travel budget, skill O(n2) Heuristic

aIn the column of constraints, we use “deadline” to denote deadline constraints (see Sect. 2.3 for more details)
bIn the column of time complexity, we use “–” to represent that the time complexity is not given in the paper. We use n to denote the maximum
value between the number of tasks and the number of workers.

simpler subproblems and then eliminate the conflict of
these subproblems. She et al. [181] propose a two-phase
algorithm called DeDP. It achieves the approximation
ratio of 0.5 with time complexity of O(n3) and space
complexity of O(n2). To improve the efficiency, they fur-
ther devise an optimized algorithmDeDPO.Tomaximize
the reward of the performed tasks, He et al. [113] propose
a local ratio-based algorithm, LRBA. They also use the
same technique to prove that the approximation ratio of
LRBA is 5. Experimental results show that LRBA out-
performs a Greedy-based algorithm.

3.5.3 Summary on static planning

Table 5 summarizes existing works on static planning.
Static planning in spatial crowdsourcing has been studied
in two settings, One-Worker-To-Many-Tasks Static Plan-
ning and Many-Workers-To-Many-Tasks Static Planning.
Since One-Worker-To-Many-Tasks Static Planning is NP-
hard, the Greedy-based solutions are proposed to improve
the efficiency of exact solutions. However, all Greedy-based
solutions have no theoretical guarantee in the effective-
ness. The local ratio technique is often exploited to design
an approximation solution. Experiments [113,181] on the
Meetup datasets in [153] show that the local ratio-based algo-
rithm is more effective than the Greedy-based solution.

3.6 Dynamic planning

Dynamic planning is the planning problem where the infor-
mation of workers or tasks is unknown in advance. It is more
challenging than static planning since the routes of workers
have to be planned when only partial information is avail-
able. As with static planning, we review research on dynamic
planning in two categories: One-Worker-To-Many-Tasks
Dynamic Planning (Sect. 3.6.1) and Many-Workers-To-
Many-Tasks Dynamic Planning (Sect. 3.6.2).

3.6.1 One worker to many tasks

Research on One-Worker-To-Many-Tasks Dynamic Plan-
ning often maximizes the total utility under the budget of
travel cost. As before, we review two kinds of total utilities,
the total number of assignments [144] and the total payoff of
the workers [190].
Maximizing total number of assignments Li et al. [144]
prove that under the adversarial order model, no determinis-
tic algorithm has a constant competitive ratio. They propose
several Greedy-based approaches such as nearest-neighbor
heuristic (NN-Greedy) and earliest deadline heuristic (ED-
Greedy). They further propose a bidirectional search-based
algorithm to improve the effectiveness. The search begins
with the origin and the destination of the worker. Some prun-
ing strategies are proposed to reduce the searching space.
Maximizing total payoff Sun et al. [190] extend the prob-
lem in [144] to maximize the total payoff to workers. They
devise an NN-greedy-based algorithm to balance three influ-
ence factors on a worker’s choice in terms of which task
to undertake next. They further borrow the idea of offline-
guide-online technique [91] to enhance the effectiveness and
efficiency.

3.6.2 Many workers to many tasks

Among the planning problems discussed in this survey,
dynamic planning for multiple workers is the most chal-
lenging. We review existing literature with the objectives to
maximize the total number of assignments [38], maximize
the total payoff [40,192,247] or minimize the total travel dis-
tance [119,158].
Maximizing total number of assignments In [38], the
authors design an auction-based framework. In the frame-
work, workers give out their bids according to their best
schedule if incorporating the new task and the platform then
selects a worker for the task.
Maximizing total payoff Tao et al. [192] devise two algo-
rithms: delay planning and fast planning to solve the problem.
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Table 6 Comparisons of existing solutions to task assignment as a dynamic planning problem

Method Objective Constraints Time complexitya Analysis modelb Ratio

Re-Route [144] Maximizing total number Deadline – AO Heuristic

Auction-SC [38] Deadline – – Heuristic

Fast-Planning [192] Maximizing total payoff Deadline O(n3) AO Heuristic

APART [40] Deadline, budget – AO Heuristic

EPBR [190] Deadline, range – – Heuristic

PBM [247] Deadline, budget O(n3) – Heuristic

t-share [158] Minimizing total travel distance Deadline – – Heuristic

kinetic [119] Deadline, budget – – Heuristic

pruneGreedyDP [211] Minimizing unified cost Deadline O(n2 + n2 log n) AO Heuristic

aIn the column of constraints, we use “range” to denote range constraints, “deadline” to denote deadline constraints (see Sect. 2.3 for more details)
bIn the column of time complexity, we use “–” to represent that the time complexity is not given in the paper. We use n to denote the maximum
value between the number of tasks and the number of workers
cIn the column of analysis model, we use “–” to represent that the paper has no competitive analysis under specific models

In delay planning, the worker, who has not finished his/her
currently assigned tasks, will not be allocated to the newly
arrived tasks. Instead, the route of a worker in fast plan-
ning may be updated when new tasks arrive. Both [40]
and [247] focus on maximizing the total payoff in another
type of application, ride sharing. Asghari et al. [40] propose a
branch-and-bound solution to find the optimal routes. Zheng
et al. [247] devise an order matching-based solution.
Minimizing total travel distance Both [158] and [119] aim
to minimize the total travel distance while trying to serve all
requests.Ma et al. [158] first study the dynamic task planning
for ride-sharing service on a road network. A filter-and-
refine-based framework t-share is devised with grid index.
Based on a similar framework, Huang et al. [119] design a
trie-based data structure called kinetic tree. The kinetic tree
applies the procedure of insertion to update the route of each
worker.

3.6.3 Summary on dynamic planning

Table 6 compares existingworks on dynamic planning. Exist-
ing studies on dynamic planning, particularly those for ride
sharing service, has twomain limitations. First, the optimiza-
tion objectives in some papers are conflicting (e.g., [158]
and [119]). Second, some solutions are inefficient. Specifi-
cally, some algorithms are inefficient when the capacity of
workers becomes larger. For example, [247] restricts that the
capacity is no more than 2 and [119] can not response in
real time anymore when the capacity becomes 6 (see experi-
ments in [211]). Major solutions rely on inefficient insertion
procedure [119,158]. To address these limitations, Tong et
al. [211] abstract a unified formulation of dynamic planning
in sharing transportation, i.e., URPSM problem, which gen-
eralizes the previous two objectives. They further design a
novel dynamic programming based insertion operation to
improve the efficiency. They compare their solutionswith the

state-of-the-art algorithms on two large-scale datasets, i.e.,
the GAIA datasets [22] collected by Didi Chuxing and the
NYC datasets [16] collected from the taxis in NewYork City.
Experiments on these two datasets show that their framework
pruneGreedyDP outperforms t-share [158] and kinetic [119].

3.7 Discussions

Wesummarize representative studies on each category of task
assignment in Table 3 (static matching), Table 4 (dynamic
matching), Table 5 (static planning) and Table 6 (dynamic
planning). Almost all these papers focus on the micro-tasks
rather than macro-tasks. This is because a macro-task (e.g.,
mapping a city) is usually decomposed into large numbers
of micro-tasks (e.g., geotagging a landmark in this city) on
real-world platforms. Then the algorithms can still be used
to determine the allocation between workers and decom-
posed micro-tasks. Comparing these studies, many focus
on the dynamic scenario instead of the static scenario and
there are more papers on matching than planning. It seems
that the offline-guide-online technique is helpful to obtain
a better competitive ratio in dynamic task matching under
the known i.i.d model or the known adversarial distribution
model. We also observe that there is no competitive algo-
rithm in dynamic planning. Thus, the offline-guide-online
technique from dynamic matching may be a starting point
to devise competitive algorithms for dynamic planning.
Finally, despite extensive research on either static planning or
dynamic planning, there is still no comprehensive evaluation
on these solutions either empirically or theoretically.

4 Quality control

One characteristic of crowdsourcing is that tasks are per-
formed by workers of diverse quality. Quality control aims
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to ensure high-quality task completion in presence of diverse
worker quality, which is achieved by allowingmultiplework-
ers to perform the same task. Quality control in traditional
crowdsourcing roughly deals with two issues: (1) how to
quantify the quality of workers and tasks; and (2) how to
aggregate results from workers of diverse qualities to meet
the quality requirements of tasks. The spatiotemporal factors
add new dimensions in both issues, which we discuss in this
section.

4.1 Quality modeling

The definition of worker and task quality is application-
specific. We focus on the worker and task quality related
to spatiotemporal factors.

4.1.1 Quality of worker

First we discuss worker quality used in traditional crowd-
sourcing (inherentworker quality) and then the new factors in
spatial crowdsourcing (spatiotemporal related worker qual-
ity). Finally, we briefly review the methods to estimate the
quality of workers.
Inherent worker quality Worker quality in traditional
crowdsourcing can be modeled by worker probability [53,
105,209], confusion matrix [215,222] and diversity of skills
[115,246]. Specifically, theworker probability approach uses
a single value to model the quality of a worker. The value can
be the accuracy, confidence, experience or reputation of the
worker. A large value normally means a high worker quality.
However, the single-valued quality may not suffice to char-
acterize the worker quality for some complex tasks. Hence
multi-dimensional approaches such as vectors and confusion
matrices are proposed to describe worker quality. The ele-
ments in the vectors or confusion matrices represent various
skills ofworkers and the conditional probabilitieswith differ-
ent truth values. For example, a normalized four-dimensional
vector (0.30, 0.78, 1.00, 0)T may represent a worker’s abili-
ties on Java, Python, Ruby and C#. Each row of a confusion
matrix is the probability distribution under the condition of
different correct answers. In general, the vector and matrix
approaches characterize workers in more detail and outper-
form the single-valued worker probability model [248].
Spatiotemporal related worker quality In spatial crowd-
sourcing, quality of workers is often affected by extra
spatiotemporal constraints. For example, in addition to an
inherent quality as mentioned above, each worker is also
assumed to have a distance-aware quality in crowdsourced
POI labeling applications [117]. In fact, it is common for spa-
tial crowdsourcing applications to assume that workers can
only reliably perform tasks within a certain range [133,205].
Assessment of worker quality The assessment methods of
worker quality vary for different aspects of worker qual-

ity. Assessment of the inherent quality is usually based on
historical data [63,65,133,237]. For example, the historical
accuracy to perform tasks is used to estimate the accuracy
of a worker to perform future tasks [65,237]. Spatiotemporal
related quality is often set via various spatiotemporal data
processing models. For distance-aware quality, parameter
estimation methods like Bayesian [100,167,168] and max-
imum likelihood estimation [117] are adopted to evaluate
worker qualities with different distance sensitivities.

4.1.2 Quality of task

On the one hand, similar to traditional crowdsourcing, the
quality of a crowdsourcing task is evaluated by reliabil-
ity, which is usually formalized as the probability that over
50% workers correctly answer the task [133,180,219] or the
chance that as least one worker successfully completes the
task [103,240]. Specifically, [133] was the first work to
consider the quality issue in spatial crowdsourcing. These
studies [133,180,219] focus on the spatial tasks that needs
a qualified answer, e.g., spatial data collection by taking
photos. Therefore, the requester of the task usually has an
expectation of the final answers. Differently, another type of
tasks only needs to be successfully completed by oneworker,
e.g., the on-demand taxi calling service in Didi Chuxing [4].
Thus, such studies [103,240] focus on the probability that at
least one worker can eventually finish the task.

On the other hand, unlike the crowdsourcing tasks com-
monly seen in traditional crowdsourcing, the spatiotemporal
factors may directly reflect the quality of tasks in spatial
crowdsourcing.
Latency as task quality Latency of tasks is closely related
to the quality of service for a spatial crowdsourcing plat-
form. Specifically, Zeng et al. [232] consider the maximum
latency of all tasks as a criterion for task quality. This
criteria is commonly used in real-world applications like
Facebook Editor [5] and OpenStreetMap [13]. Differently,
Das et al. [75] consider the average latency of all tasks as
a criterion for task quality. The average latency is usually
considered as the quality of tasks in taxi-dispatching plat-
form (e.g., Uber [17] and Didi Chuxing [4]) or food/parcel
delivery platform (e.g., Meituan [26] and Cainiao [3]).
Diversity as task quality Diversity is particularly important
for event detection or labeling applications. For example, a
POImay need to be labeledmultiple times by different work-
ers so that reasonably accurate and complete information
about the POI can be obtained [118]. Cheng et al. [65] first
consider the diversity in the quality of tasks. They observe
two types of diversity from the tasks in spatial crowdsourc-
ing: spatial diversity and temporal diversity.

Specifically, spatial diversity is important when some
tasks ask the workers to take photographs/videos of the city
landmarks from different angles. When there are r workers
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around the task, the authors use the entropy to define the
spatial diversity (SD) as

SD = −
r∑

j=1

A j

2π
· log

(
A j

2π

)
, (1)

where A j is the angles between two results (photos).
Temporal diversity is important when some tasks require

the workers to complete the tasks at different time intervals.
For instance, a vacant parking space needs to be monitored
at different time windows [65]. If there are r workers who
will be working at each time interval of the whole working
period T , the temporal diversity is also defined based on the
idea of entropy as

TD = −
r+1∑

j=1

t j
T

· log
(
t j
T

)
, (2)

where t j is the j th time interval.
The two kinds of diversity can also be combined to assess

the spatiotemporal diversity (STD) of a task:

STD = β · SD + (1 − β) · TD, (3)

where β is a parameter to balance the importance of spatial
diversity and temporal diversity.

4.2 Result aggregation

Given the worker quality and the results frommultiple work-
ers, aggregation techniques derive the final result for each
task so that the quality requirements of tasks can be satis-
fied. Typical aggregation techniques [248] include Major-
ity Voting [53,140], Weighted Majority Voting [115,147],
Probabilistic Graphical Models [77,174], etc. Aggregation
techniques in spatial crowdsourcing need to account for
spatiotemporal factors, which brings in new aggregation
techniques.

In the task of real-time urban traffic speed estimation,
workers are assigned to collect or voluntarily contribute traf-
fic data in different locations, and the goal of the task is to
reliably estimate the traffic speed in the road network. For
example, in [116,155], the systems recruit workers to probe
the real-time traffic speed of some roads, while Waze [19]
collects traffic data from users’ mobile phones to estimate
the average speed when its users drive around with the app
turned on. Existing studies generally ignore the quality of
workers, implicitly assuming that the data collected bywork-
ers are reliable. In addition, it is often the case that limited
number of workers can be recruited to measure the traf-
fic speed because of the budget constraint, i.e., only the
speeds of part of road segments are available. Therefore,

the problem boils down to choosing the optimal subset of
road segments to measure in order to maximize the qual-
ity of speed estimation of the entire road network. Hu et
al. [116] study the real-time urban traffic speed estimation
problem where only the speeds on a predefined number of
roads (seeds) can be obtained by spatial crowdsourcing. They
propose five algorithms (SupGreedy, Random, MaxCov,
CovGreedy, HybridGreedy) to select seeds and present a
two-step model to estimate the speeds of other roads, taking
advantage of the correlation among roads. Specifically, the
first step constructs a probability graphical model to infer the
traffic trend and the second step estimates the traffic speed
using a hierarchical linear model. Evaluations on the taxi
datasets [1] collected in Beijing and Nanjing show a traffic
speed estimation accuracy around 80%. Similar to [116], Liu
et al. [155] capture two statistical properties of speed, period-
icity, and correlation, using a probabilistic graphical model.
They propose to select the best set of workers to probe the
real-time traffic speed for the corresponding roads using a
hybrid Greedy-based algorithm with an approximation ratio
above (1 − 1

e )/2. The traffic speed of the entire road net-
work is then estimated using speed propagation based on
the model constructed beforehand. The final false estimation
rate of the proposed method on the gMission dataset [63] is
around 0.08.

In the crowdsourced POI labeling task, a graphical prob-
ability model is proposed to deduce the correct labels [117].
Assuming that the labeling results follow a conditional dis-
tribution onworker quality, POI influence and the true labels,
the authors propose amaximum likelihood estimation (MLE)
and expectation maximization (EM) method to estimate the
unknown probability parameters and labeling results.

In the task of crowdsourced event detection, reports
from different workers are aggregated to detect the true
event [100,168]. In [168], the problem is formulated as truth
inference undermissing or wrong reports. The authorsmodel
missing and wrong reports based on the location popular-
ity, the truth of events and the participant reliability, and
propose a recursive inference algorithm to infer the latent
variables and the truth of events. The method is extended
in [100] by considering the state of event as a function of
time. The authors design inference algorithms to update the
conditional probability of report and variables recursively
until the true label of event converges. The Kalman fil-
ter is also used to improve the approximation to the event
truth.

In the tasks of collaborative mapping, workers often
voluntarily participate inmapmaking without financial com-
pensation. In such applications (e.g., OpenStreetMap [13]
and Wikimapia [29]), the major purpose of the macro-task
is to map a large region (e.g., city), which can be decom-
posed into large numbers of micro-tasks (e.g., mapping a
landmark). Quality control for such macro-tasks, i.e., obtain-
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Table 7 Comparison of
representative studies on quality
control in spatial crowdsourcing

Reference Quality modeling Aggregated methoda

Worker Task

[133] Probability Reliability Majority voting

[232] Probability Latency and reliability Majority voting

[65] Probability Diversity and reliability Majority voting

[219] Probability Reliability Weighted majority voting

[103] Probability Reliability –

[240] Probability Reliability –

[100] Probability Reliability Bayesian estimation

[167,168] Probability reliability Bayesian estimation

[117] Probability and distance Reliability Expectation maximization

aIn the column of aggregated method, we use “–” to represent that the paper aims to guarantee that at least
one worker can successfully complete the task (e.g., on-demand taxi dispatching) and hence the proposed
method does not need to consider the aggregation

ing the qualified results of the macro-task, consists of three
steps.

– Assessment of worker/task quality Since the workers
are usually volunteered, the qualities ofworkers and tasks
maynotably differ in practice [114,179].Ononehand, the
inherent quality of worker is usually based on historical
records and the user profiles [235]. On the other hand, the
quality of task can be evaluated based on spatiotemporal
diversity [65,70]. Existing work also uses the densities
of the tasks to assess the quality of task [70], e.g., the
number of provided answers over the area of the region,
the number of volunteered workers over the population
of the region, etc.

– Aggregation of micro-tasksWith the decomposition of
the macro-tasks, the results of each micro-tasks can be
independently aggregated. Therefore, typical aggrega-
tion techniques include voting [248] and rating [179] can
be applied. Someplatforms likeOpenStreetMap [13] also
allow the expert workers to help validate the aggregated
answers.

– Removal of inconsistencies Finally, the results of some
micro-tasks may be conflicting from the global view
of the macro-task, e.g., administrative boundaries self-
intersect or split instead of being closed-loop sequences
of roads. Thus, existing work also investigates remov-
ing the consistencies between the micro-tasks. Keep-
Right [24] is a data consistency check tool for Open-
StreetMap which can detect errors in the map data, such
as loops, overlapping ways, and missing boundaries.
Hashemi et al. [110] present a similarity-based frame-
work to detect the logical, topological inconsistencies
according to the spatial relationships of micro-tasks.

A few studies have also explored deep learning [56] in
collaborative mapping.

4.3 Discussions

In a sense, quality control and task assignment in spatial
crowdsourcing are interwoven. Table 7 summarizes existing
studies on quality control.

On the one hand, the quality metrics of workers and tasks
in Sect. 4.1 can be directly applied as either a constraint
or an objective in the task assignment problems in spa-
tial crowdsourcing. For example, in [65], maximizing the
expected spatial/temporal diversities and the smallest reli-
ability among all tasks are regarded as part the objective
of task assignment. In the maximum correct task assign-
ment problem [133], a correct match between a task and
assigned workers should satisfy two spatial constraints: (i)
tasks should be in the spatial region of assigned workers;
(ii) aggregated reputation of workers should exceed a preset
threshold of tasks.

On the other hand, the aggregation techniques in Sect. 4.2
can be combined with effective task assignment to further
improve the quality of task completion. For example, in
crowdsourced POI labeling, the authors divide the problem
into label inference and task assignment [117]. In label infer-
ence, the accuracy of a label is determined by worker quality
and POI influence. In task assignment, they use MLE to esti-
mate the parameters mentioned above and the final results
of labels. Then they adopt a Greedy-based algorithm which
selects the assignment with maximum accuracy improve-
ment for current workers. In [116], the speed estimation task
is completed in two steps. The first step is task assignment
which selects K roads that can best perform speed estima-
tion. After obtaining the speeds of K roads, the second step
is to infer the speed of other roads based on the these K
roads.
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5 Incentive mechanism

Anycrowdsourcing involves certain incentivemechanisms to
attract active and qualified workers. Incentive mechanisms
determine the rewards to workers such that more workers
can be motivated to perform the tasks. Compared with the
incentive mechanisms in traditional crowdsourcing, incen-
tive mechanisms in spatial crowdsourcing not only need to
attract the interests of workers (which is similar), but also to
involve reliable workers to physically move to the location
of tasks (which is unique). Since the locations of workers
may change over time, the incentive mechanisms in spatial
crowdsourcing also need to account for the spatiotemporal
factors. In this section, we first introduce the commonly used
evaluation metrics in the design of incentive mechanisms
(Sect. 5.1). Next, we divide existing works into two cate-
gories: posted price models (Sect. 5.2) and auction-based
models (Sect. 5.3). In posted price models, the platform first
determines the reward for workers and workers can only
accept it or not. Conversely, in auction-based models, work-
ers can first submit their expected reward and the platform
thendetermines the rewards to theworkers afterward. Finally,
we compare existing studies in Sect. 5.4.

5.1 Evaluationmetrics

An incentive mechanism is assessed from two aspects: algo-
rithm metrics and mechanism metrics.
Algorithm metrics In spatial crowdsourcing, an incentive
mechanism is often an algorithm. Thus, the common algo-
rithm metrics are also used to assess the efficiency and
effectiveness of a mechanism.

– Complexity Complexity analysis includes the running
time and memory usage of the algorithm, which reflects
the efficiency of an incentive mechanism. In particular,
the computational efficiency of a mechanism represents
whether the algorithm can be terminated in polynomial
time.

– Approximation/competitive ratio Approximation ratio
and competitive ratio guarantee how bad an algorithm is
compared with the optimal solution in the worst case in
the offline scenario and the online scenario, which reflect
the effectiveness of an incentive mechanism.

Mechanism metrics As a functional mechanism, an incen-
tive mechanism should have the properties below.

– Truthfulness A truthful mechanism guarantees that
workers always submit the truthful information (e.g., the
expected reward based on his/her private evaluation) to
the platform. In otherwords, they cannot obtainmore rev-
enue by submitting false information about themselves,

where the revenue of a worker represents his/her reward
minus his/her cost to perform the task.

– Individual rationality An individually rational mecha-
nism guarantees that each participated worker will obtain
a nonnegative revenue, i.e., the reward to the worker is
no less than the cost of the worker to perform the task.

– Budget balance A budget-balanced mechanism guaran-
tees that the total reward to workers does not exceed a
given budget, i.e., the mechanism does not need more
budget from outside.

5.2 Posted price models

The posted price model is widely used in applications like
taxi dispatching (e.g., Uber [17]) and food delivery (e.g.,
Meituan [26]). In this model, the platform determines the
reward to the worker and the worker can only decide whether
to accept the task or not. Incentive mechanisms following
this model can be further divided into two types, Supply-
and-Demand-AwareModel andQuality-AwareModel. In the
first type, the rewards are mainly determined based on the
comparison between supply (i.e., the number of workers)
and demand (i.e., the number of tasks). In the second type,
the rewards are mainly determined based on the quality of
workers or the quality of tasks.

5.2.1 Supply-and-demand-aware model

In spatial crowdsourcing applications, the supply (i.e., the
number of workers) and the demand (i.e., the number of
tasks) often vary in space and time [207]. The correspond-
ing incentive mechanism should reflect the spatiotemporal
dynamics between supply and demand. That is, the reward
to the worker and the payment of the requester should be
dynamic, i.e., dynamic pricing. Compared with the tradi-
tional fixed price strategy (i.e., static pricing), the incentive
mechanisms based on this model are more likely to obtain
higher total revenue, which has already been validated in
real-world applications e.g., the surge pricing in Uber [17].

In the model, a base price represents the long-term unit
price, which is usually determined based on prior knowledge
of the markets. According to the dynamics of supply and
demand, an incentive mechanism changes the unit reward on
basis of the base price or the most recently used price.

A well-known adoption of this model is the surge pricing
in Uber [17], which has been studied in [54,61,122,138,157].
Specifically, during times of high demand for rides, the
unit fare may change by multiplying the base price with a
multiplier accordingly to the incentive mechanism of surge
pricing. Thus, the areas with higher multipliers usually indi-
cate a steady stream of ride requests (i.e., tasks), where
drivers (i.e., workers) will be attracted to come to. As a
result, this incentive mechanism will eventually ensure that
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the pickup is quick and reliable. Experiments show that the
surge pricing strategy not only reduces the waiting times of
tasks, but also improves rewards for workers [157].

The supply-and-demand-aware model has also attracted
extensive academic research.

Banerjee et al. [44] apply queuing theories to analyze
the incentive mechanisms in ride sharing. They propose a
single-threshold-based dynamic pricing, where the unit fare
for tasks reduces to a lower value if the number of workers
is above the threshold. They find that the single-threshold
dynamic pricing is robust and can be applied to find an opti-
mal base price.

Both [45] and [60] applyMarkov process to determine the
fare to tasks and the reward to workers. Banerjee et al. [45]
still assume that tasks appear on the platform following
the queuing model and their pricing strategy is determined
by Markovian transitions between independent state (i.e.,
the distributions of workers on the platform). They obtain
the approximate solution by relaxation techniques. Chen
et al. [60] consider more spatiotemporal issues, e.g., travel
time and driver direction. They use Markov decision process
(MDP) to formulate the problem, i.e., the driver distribution
on each vertex of graph as a state, the throughputs of tasks on
each edge as actions, and the transitions between states as the
revenue. Even though it is PSPACE-hard to solveMDPs, they
design an polynomial-time algorithm to find an approximate
result.

Differently, Tong et al. [210] use bipartite graphs to model
theGlobalDynamicPricing (GDP)problem.They aim tofind
the optimal pricing strategy along with the task assignment.
First, they propose aMyersonReserve Price-based algorithm
to determine the base price for each urban area. Based on this
base price, they further propose a matching-based algorithm
with an approximation ratio of 1 − 1/e ∼ 0.632 to dynam-
ically adjust the unit price for each area according to the
dynamics of supply and demand.

Other studies [39,90,184] focus on the incentive mech-
anisms specifically for ride sharing. Fang et al. [90] use
subsidies to provide incentives to workers such that enough
supplies can be ensured. Their experiments show that subsi-
dies are effective to avoid supply shortages.Asghari et al. [39]
take the future changes of supply and demand into consid-
eration. Their intuition is that in regions where the supply
is abundant, lowering the prices can lead to higher demand
which in turn increases the number of requests.

Shen et al. [184] integrate the task planning into the design
of incentive mechanisms in dynamic scenario. They develop
an Integrated Online RidesharingMechanism (IORS), which
satisfies desirable properties such as truthfulness, individual
rationality, and budget balance. Their experiments show that
compared to an auction-based mechanism [68] (which we
will introduce later), IORSachieves a very close performance
with substantially less computational time.

5.2.2 Quality-aware model

Sometimes tasks are expected to be accomplished with high
quality, especially in applications like crowdsourced spa-
tiotemporal data collection. The quality-aware model takes
quality into account when providing incentives to workers.
We focus on how to design effective incentives (i.e., deter-
mine the reward to attract reliable workers), which is related
to, but different from quality control in Sect. 4. According
to the types of quality discussed in Sect. 4, we divide incen-
tive mechanisms using quality-aware models into two types,
quality-of-worker-aware [218,225,230] and quality-of-task-
aware [151,163]. Note that most of the studies above are
under a reward budget constraint, i.e., the total rewards of
workers should not exceed the budget of the task.
Quality-of-worker-aware Studies of this type consider the
reputation ofworkers [218,230] or thewillingness ofworkers
in terms of spatial factors [225] when deciding the reward
regarding the quality of workers.

Yu et al. [230] and Wang et al. [218] model the qual-
ity of workers with their reputation. They both assume
that workers are classified into three kinds: high reputation,
medium reputation or low reputation. The rewards of work-
ers are determined by the reputation level, i.e., the worker
with higher reputation will obtain higher reward. However,
a worker with low reputation will not be paid, since they
assume the requester does not like to engage such a worker.

Wu et al. [225] consider the distance between workers
and tasks. In general, workers prefer tasks nearby [173].
Therefore, in [225], extra remote subsidies should be paid
if workers far away are selected. The subsidy increases lin-
early with the distance between the worker and the task but
no higher than a threshold. The final reward for a worker
consists of the base price (calculated with the local average
payment per unit time), the subsidy, and the extra tips for
more incentives.
Quality-of-task-aware Studies in this type consider the
latency [163] or the spatial diversity [151] with regard to
quality of tasks.

Mitsopoulou et al. [163] try to minimize the latency of
tasks by incentive mechanisms. They propose an adaptive
pricing policy. Specifically, workers will receive a penalty
if they do not respond immediately, i.e., workers providing
responses with longer latency will get less reward, and the
penalty increases with the latency. The parameters of the
reward function can be tuned for every worker. So by adjust-
ing the parameters, the platform can make more workers
respond to the tasks, or make workers respond more quickly.

Liu et al. [151] provide incentives to workers in consider-
ation of the spatial diversity. They study the case where there
is a task which needs to collect data from different places and
propose a price adjustment function. This function allocates
more money to the workers doing tasks in such places where
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Fig. 6 Workflow of a basic auction model for incentive mechanism
design in spatial crowdsourcing. Step (1): Announcement; Step (2):
Bidding; Step (3): Rewarding

data already collected is less than the expected amount. As
a result, more workers will be attracted to such places, and
the imbalance of data collection among different places can
be mitigated. With enough data in each place required by the
task, higher quality can be achieved.

Many real applications apply the idea of giving more
rewards to remote places for more data, considering the spa-
tial diversity. Pokémon Go [14] is among one of the most
successful. In this gamification-based spatial crowdsourc-
ing platform, users can use their mobile phones to track
and catch Pokémon (virtual monsters). According to a recent
study [202], the platform can also collect the spatial data via
GPS. By placing attractive Pokémons at different locations,
the platform can stimulate players to go there. As a result,
diversified and qualified data can be collected.

5.3 Auction-basedmodel

Posted price models determine the reward to workers based
on the estimated expectationofworkers.When the estimation
is wrong or unavailable, the reward might be improperly set.
Auction-based models overcome this disadvantage by per-
mitting workers to bid the task with their own expectation
(i.e., private information including the reward they expect,
etc.) and then determining the reward to the worker after-
ward. We first introduce the workflow of the auction model
in Sect. 5.3.1, and then review the representative works in
Sect. 5.3.2.

5.3.1 Workflow

Figure 6 illustrates the workflow of a basic auction model.
It includes three steps.

(1) Announcement The platform first announces the task to
the workers who are possible to complete it under the
spatiotemporal constraints.

(2) BiddingAfter receiving the announcement from the plat-
form,workers bid basedon their private information (e.g.,
submit their expected payment) to the platform. In this
step, a worker can be strategic and selfish. Hence he may
submit the fake information to earn higher reward (i.e.,

an untruthful worker). The incentive mechanisms should
guarantee the truthfulness of the worker.

(3) Rewarding The platform decides the reward according
to the collected private information.Besides, the platform
sometimes also needs to determine the task assignment
along with the reward.

Next we review representative auction-based incentive
mechanisms. Since the first step of announcement is the
same for most mechanisms, we mainly discuss the bidding
and the rewarding procedures of different mechanisms as
well as their performances.

5.3.2 Representative auction-basedmechanisms

We review auction-based incentive mechanisms for two
applications, ride sharing [37,40,236] and citizen sensing ser-
vices [68,243].

(i)Auction-based incentives for ride sharing. Both [40]
and [37] focus on incentive mechanisms to maximize the
total revenue of the platform, i.e., total payment of requesters
minus the total rewards to workers. They both use an auction-
based model to determine the reward to the worker along
with the assignment of tasks. Specifically, after receiving the
announcement from the platform, the worker will locally
calculate the updated route which is the most profitable
to complete this new task. Next, the worker will bid their
expected reward and the calculated route to the platform.
Finally, the platform will assign the task to the worker with
the highest revenue from this task.

In [37,40], the payment of requester is determined based
on the calculated route of its assigned worker. In [40], the
authors apply a first-price auction scheme (i.e., to pay the
highest reward to the worker with highest bid) to determine
the reward to the worker while in [37] the researchers use
the second-price auction scheme (i.e., to pay the second
highest reward to the worker with highest bid) to determine
his/her reward. Since a second-price auction model can guar-
antee a few promising mechanism properties, the incentive
mechanism used in [37], SPARP, is truthful and individually
rational. Finally, they conduct the experiments on the real-
world datasets of New York City’s taxis [16]. Experimental
results show that [37] can obtain more total revenue than the
first-price auction scheme.

Zhang et al. [236] adopt another auction model, double
auction. In their incentive mechanism, both workers and
requesters provide their bids based on private information
(i.e., the expected reward to workers and the expected pay-
ment of requester) to the platform at the same time. After
receiving the private information from the two sides of the
market, the platform will make a task matching between
workers and requesters and determine the actual reward and
the actual payment. They also design a discounted trade
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Table 8 Comparison of representative studies on incentive mechanisms in spatial crowdsourcing

Incentive model Reference Time complexitya Ratio Truthfulness Individual rationality Budget balance

Auction [40] – – � � �

Auction [37] – – � � �

Auction [236] – – � � �

Auction [68] – – � � �

Auction [238] O( 1
ε
|W |3 log(|T |) O( 1

ε
) � � �

Auction [243] O(|T ||W |min(|T |, |W |)) 0.25 � � �

Quality-aware [230] – – � � �

Quality-aware [218] O(|W |) – � � �

Quality-aware [225] – – � � �

Quality-aware [151] O(|T | × (# of Time Windows)) – � � �

Quality-aware [163] – – � � �

Supply-and-demand-aware [210] |G| log |G| + |P| ×
min(|T |, |W |)(log |G| +
|E |)

0.632 � � �

Supply-and-demand-aware [44] – – � � �

Supply-and-demand-aware [60] Polynomial – � � �

Supply-and-demand-aware [39] O(|G|3) – � � �

Supply-and-demand-aware [90] – – � � �

aIn the column of time complexity, we use “–” to represent that the time complexity or ratio is not given in the paper. We use T and W to denote
the set of tasks and the set of workers, respectively
b|G| is the number of regions, |P| is the number of discrete prices, and |E | is the number of possible assigned pairs of tasks and workers

reduction mechanism to make a discount in both actual
reward and actual payment, DTR, which is truthful, indi-
vidually rational, and budget-balanced.

Cheng et al. [68] study the incentive mechanism design
in the last-mile delivery service. In the step of bidding, the
worker sends his/her direct travel distance and a compensa-
tion rate (i.e., the cost in unit distance) to the platform. The
authors devise the bottom-up mechanism to determine the
actual reward along with routing plan. Their mechanism is
truthful, individually rational, and budget-balanced.

(ii)Auction-based incentives for citizen sensing. Zhang
et al. [238] propose an auction-based incentive mechanism
in the online scenario. Specifically, each worker dynamically
appears on the platform, and proposes his/her bid (including
the expected reward) to the platform. The platform assigns
the tasks to the selected workers and determines the reward
to them, in order to maximize the total utility. Their incen-
tive mechanism TOIM is computationally efficient, truthful,
individually rational and profitable (i.e., the platformwill get
a nonnegative revenue from the mechanism).

Zhao et al. [243] also focus on the incentive mechanism
design in the online scenario, with any monotone submod-
ular [166] objective function and a budget constraint. In the
bidding step, each worker submits his/her expected reward
and the sets of tasks that he/she would like to accomplish. In

the last step, the platform selects a subset of workers based
on an adaptive threshold such that the total reward to these
workers does not exceed the budget. They propose two incen-
tive mechanisms, OMZ and OMG, to handle the cases when
workers immediately leave the platform and the workers can
stay for a time period, respectively. The mechanisms are
truthful and individually rational with a competitive ratio of
0.25 and time complexity of O(mnmin(m, n)) at each time,
where m and n are the number of requests and workers. To
validate the effectiveness of the proposed mechanisms, they
conduct the experiments in the Wi-Fi signal sensing applica-
tion provided by [185]. The experimental results show that
both OMZ and OMG achieve the approximate result as the
offline optimal solution. In particular, OMZ is often better
than OMG in terms of effectiveness.

5.4 Discussions

In summary, an incentive mechanism should motivate work-
ers to participate in the tasks. In spatial crowdsourcing,
different workers may have different interest in the task
because of the variable spatial and temporal information of
workers and tasks. Thus it has become a challenge how to
design the incentive mechanism for spatial crowdsourcing.
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An incentive mechanism is assessed using two types of
metrics, i.e., algorithm metrics and mechanism metrics. As
shown in Table 8, most efforts focus on the algorithm met-
rics (especially the time complexity) of their mechanisms.
Although many incentive mechanisms are computationally
efficient (i.e., able to terminate in polynomial time), the spa-
tiotemporal dynamics may raise a real-time requirement for
practical incentive mechanism design. Mechanism metrics
are emphasized more in auction models than in posted price
models. This is because the auction-based model considers
the participatory of the workers before pricing for workers
and, as a result, requires the mechanism metrics to guarantee
the robustness.

Besides, the formulation of the incentive models notably
varies even for the applications (e.g., for taxi dispatching [45,
60,210]). Hence it seems necessary to come up with a unified
formulation such that the proposed incentive mechanisms
can be fairly compared in terms of effectiveness, efficiency,
and flexibility. Furthermore, many existing works focus on
maximizing the revenue in short term, and it is still open how
to design an incentive mechanism for the long-term revenue.

Finally, it is worth mentioning that there is another suc-
cessful incentive besides the aforementionedones: volunteered-
based incentive. In practice, when the scale of the whole task
is large (e.g., editing the whole map of world), it usually
requires a large number of workers which often leads to a
extremely high payment. Thus, a practical and efficient way
to complete such tasks is to get help from volunteer work-
ers [85]. For example, one of the biggest volunteer-based
community in spatial crowdsourcing is the Humanitarian
OpenStreetMap Team (HOT) [23]. Since its foundation in
2010,HOThas alreadyhad170,252 registered volunteers and
together completed 1,933,608 tasks related to environmental
and societal issues (e.g., disaster response and risk reduction).
The motivations of these volunteers are either contributing to
the greater good (e.g., users inHOT) or gaining something by
taking part (e.g., drivers in Waze [19]). However, rather than
the algorithmic/theoretic aspects of incentive mechanisms,
existing works on volunteer-based incentives usually focus
on the supporting tool designs to attract volunteers [85,137],
which is not the major concern in this survey. We refer read-
ers to [85,136,137,152] on important issues in supporting
tool designs for volunteer-based incentive mechanisms.

6 Privacy protection

As in traditional Web-based crowdsourcing, privacy is an
important concern in spatial crowdsourcing. One particular
interest in spatial crowdsourcing is to protect the location
information of tasks and workers (and certain intermedi-
ate results) so that spatiotemporal tasks can be released and
performed without exposing the physical locations of tasks

Fig. 7 Workflow of privacy protection for task assignment in spatial
crowdsourcing. Step (1): transformation; Step (2): assignment; Step
(3): refinement

and workers to malicious users. Overall, privacy protec-
tion research in spatial crowdsourcing is dedicated to design
privacy-preserving frameworks and techniques compatible
for the core issues in spatial crowdsourcing (e.g., task assign-
ment [171]).

6.1 Generic framework

Most studies on privacy protection in spatial crowdsourc-
ing focus on privacy-preserving task assignment. A generic
privacy-preserving framework for task assignment in spa-
tial crowdsourcing consists of three steps. Figure 7 shows its
workflow.

(1) Transformation The locations of workers and (or) tasks
are transformed by some techniques.

(2) Assignment The spatial crowdsourcing platform per-
forms task assignment basedon the transformed locations
of workers and (or) tasks.

(3) Refinement Workers confirm or refine the task assign-
ment results based on their true locations.

Depending on the location transformation techniques and
the assumptions on trusted parties, the step of refinementmay
be omitted. Furthermore, some privacy protection schemes
may involve auxiliary trusted servers. In the context of spa-
tial crowdsourcing, the spatial crowdsourcing platform (the
platform for short) is usually assumed to be untrusted.

Below we review representative studies that exploit
three categories of transformation techniques: spatiotempo-
ral cloaking, differential privacy and encryption.

6.2 Spatiotemporal cloaking-based transformation

Spatiotemporal cloaking protects location privacy by hiding
the locations inside a cloaked region.

In [216], the locations of workers are first submitted to
an extra trusted server. Then, the trusted server constructs a
cloaked region around the worker’s actual location for each
worker basedon locality-sensitive hashing (LSH) [76],where
both K -anonymity [191] and locality are preserved. The
untrusted spatial crowdsourcing platform can only access
the above transformed spatial cloak of each worker. Then
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an algorithm is devised for searching the k-nearest tasks of a
worker with the help of the refinement by the trusted server,
based on which task assignment can be performed.

In [130,131], the authors assume that the workers trust
each other but do not trust the spatial crowdsourcing plat-
form. Each worker calculates his/her Voronoi cell in a
distributedmanner and forms the spatial cloak. Then a voting
mechanism is designed through which a set of representa-
tive participants are selected whose cloaked regions should
be sent out to the spatial crowdsourcing platform for query-
ing the nearest tasks, during with K -anonymity is preserved.
These query results will later be shared with the rest of the
workers. As a result, all the tasks are assigned to the nearest
workers.

In [170], instead of a spatiotemporal point, each worker
submits a cloaked area including a spatiotemporal region a
and the probability density function f of the worker at each
point in a. Based on the cloaked locations of workers and
exact locations of tasks, the spatial crowdsourcing platform
performs uncertain task pre-assignment via the expected dis-
tances between the tasks and workers. The pre-assignment
results are sent to the service of the workers and refined
according to the exact locations of the workers. Based on
the methods in [170], [172] proposes a demo of a location-
based mobile Q&A application.

6.3 Differential privacy-based transformation

Differential privacy [86] is a general-purpose approach for
privacy protection and has emerged as the de facto standard
for private data release. It releases data of a group such that
what can be learned from the released data does not substan-
tially differ regardless of the inclusion of a given individual’s
data [87]. Below are some works with different implemen-
tations of differential privacy for task assignment in spatial
crowdsourcing.

In [196], the locations of workers are first submitted to a
trusted server and then transformed via Private Spatiotem-
poral Decomposition (PSD) proposed in [71]. A PSD is a
spatiotemporal index transformed according to differential
privacy, where each index node is obtained by releasing
a noisy count of the data points enclosed by that node’s
extent. The spatial crowdsourcing platform then performs
task assignment as follows. For each task t the platform first
queries the PSD released by the trusted server for a region
where there are workers near t with a high probability. Then
the platform geocasts the information of t to the workers in
this region. The workers who are willing to perform t send
a consent message back to the platform. The method can be
also extended to dynamic data [200].

In [124,125], the authors investigate privacy protection
in crowdsourced dynamic spectrum sensing. The locations
of workers are not transformed directly. Instead, the bids

provided by all the workers are transformed, which repre-
sent the worker’s cost for spectrum sensing and are closely
tied to the worker’s current locations. The transformation to
protect differential privacy is based on the exponential mech-
anism [160]. Then task assignment is modeled as a reserve
auction problem and privacy-preserving methods for worker
selection are proposed based on the transformation.

In [217], the authors study privacy protection in crowd-
sourced urban sensing. To transform the locations ofworkers,
the spatial crowdsourcing platform first provides an obfus-
cation matrix and a data adjustment function designed via
differential privacy. The location information is transformed
by the obfuscation matrix which encodes the probabilities
of obfuscating any one region to another. The corresponding
data are transformed by the data adjustment function. Note
that the platform cannot obtain the original data although it
provides the obfuscation matrix and data adjustment func-
tion. After the transformed locations and sensory data are
uploaded to the spatial crowdsourcing platform, the platform
can infer the distribution of the data in the sensed regions
from the transformed data.

In [201], the authors propose a privacy-preserving one-
sided online task assignment scheme where tasks appear
dynamically. The locations of workers are transformed by
Geo-indistinguishability (Geo-I) [35], which is a notion of
location privacy based on differential privacy, and are sub-
mitted to the spatial crowdsourcing platform in advance.
Once a task appears, the transformed location is submitted to
the spatial crowdsourcing platform. Subsequently, the spatial
crowdsourcing platform identifies a set of candidate work-
ers who are most capable to perform the task and sends the
information of these workers to the requester of the task.
Finally, the requester of the task connects the workers one
by one bypassing the spatial crowdsourcing platform and
share the exact location to refine whom can complete the
task. The authors test their privacy-preserving schemes on a
taxi datasets called T-Drive [231]. Their experimental results
show the proposed techniques, algorithms, and heuristics
achieve high effectiveness and low disclosure of the loca-
tion information.

6.4 Encryption-based transformation

This line of research applies specific encryption techniques
on the locations of tasks and workers such that particular
calculation can still be performed on the encrypted data, e.g.,
calculating the distance between two encrypted positions.
Thus tasks can be assigned based on the calculation results.

In [150], the locations of tasks and workers are encrypted
via a Paillier cryptosystem [169]. According to Paillier cryp-
tosystem’s characteristics, the exact distance between two
encrypted positions can be calculated without releasing the
plain data. Hence the distances between the tasks and work-
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Table 9 Comparison of privacy protection techniques in spatial crowdsourcing

Transformation
techniques

Reference Protected components Arrival scenario Assignment goal Without extra
server

Computation
overhead

Spatiotemporal
cloaking

[216] Workers Static Nearest � Low

[130,131] Workers Static Nearest � low

[170] Workers Static Minimizing total cost � Low

Differential
privacy

[196] Workers Static Maximizing total number � Low

[200] Workers Dynamic Maximizing total number � Low

[124,125] Workers Static Minimizing total cost � Low

[217] Workers Static Quality of sensed data � Low

[201] Tasks and workers Dynamic Maximizing total number � Low

Encryption [150] Tasks and workers Static Maximizing total number
and minimizing total cost

� High

[149] Tasks and workers Static Nearest � High

[148] Tasks and workers Static Nearest � High

[233] Workers Static Maximizing total utility � High

ers can be obtained during task assignment. However, the
adoption of the Paillier cryptosystem significantly increases
the computation overhead. Thus the authors in [150] extend
KD-tree to SKD-tree in order to prune unnecessary Paillier
cryptosystem query or computation.

In [149], the authors take the velocity of workers into
consideration and propose a Paillier cryptosystem [169]
and ElGamal cryptosystem [95]-based privacy protection
method. Specifically, the locations of tasks and workers
are encrypted and the distance is computed in a privacy-
preserving way. The velocity of workers is also encrypted
and the travel time for a worker to move to the position of
a task can also be computed with privacy preservation. Thus
each task can be assignment to the worker with the minimum
travel time.

In [148], researchers encrypt the locations of tasks and
workers and calculate the distance secretly via the Paillier
cryptosystem [169]. Distance comparison is performed via
the Yao’s protocol [146,229], and each task is assigned to
the nearest worker. To improve the efficiency, Geohash [7] is
adopted to find the nearest workers approximately.

In [175,233], the information of tasks including their posi-
tions are posed in the spatial crowdsourcing platform in
advance and thus are not protected. The workers can browse
the information and submit their travel costs for different
tasks instead of their exact positions to the platform. The
travel cost is encrypted into perturbed data via Bitwise XOR
homomorphic cipher system [241]. After receiving all the
perturbed data from the workers, the platform assigns tasks
through a reverse auction-based algorithm.

6.5 Discussions

Table 9 shows representative studies on privacy protection
using different transformation techniques. We summarize
their main characteristics below.

– Protected components Spatial cloaking-based and most
differential privacy-based methods only protect workers.
The reasons are twofold. (i)The location privacy ofwork-
ers is more sensitive than that of tasks. (ii) It is non-trivial
to extend spatial cloaking and differential privacy-based
transformation techniques to the cases where two com-
ponents of data need to be protected.

– Applicable task assignment categories Most existing
privacy-preserving task assignment schemes only apply
to static arrival scenarios. Protecting dynamic location
information is more difficult since many transformation
techniques require all data to be protected to be known
in advance. Since most studies integrate privacy protec-
tion into the task assignment framework, the applicable
assignment goals are constrained by the privacy protec-
tionmethods. For example, in [130,131,148,149,216] the
goal is simply to assign the tasks to the nearest workers.
For other more complex goals, the assignment methods
are closely coupled with the privacy protection methods
and most of them are heuristic.

– Overhead It adds extra overhead to protect privacy in
task assignment. Encryption-based methods are often
more computation-intensive than spatial cloaking and
differential privacy-based methods, due to the high cost

123



Y. Tong et al.

of encryption/decryption and the need for extra trusted
servers for key distribution.

– Trade-off The impact of enforcing privacy protection
on the locations of workers and/or tasks depends on the
specific privacy-preserving technique. If the transforma-
tion is performed through spatiotemporal cloaking or
differential privacy, the effect is mainly on the number of
assigned pairs of tasks and workers, as some pairs which
satisfies the range constraint may not satisfy it anymore
after their locations are transformed.However, the quality
of each assigned pair is not affected due to the refinement
step. If the transformation is performed through encryp-
tion, the quality is not impacted as all the calculation is
exact. However, the low efficiency of encryption is its
main drawback.

In summary, a practical privacy-preserving task assign-
ment scheme should protect at least the locations of workers.
Privacy protection brings extra overhead and constraints to
task assignment in spatial crowdsourcing.

In addition to task assignment, privacy protection is also
necessary in other core issues in spatial crowdsourcing. For
example, privacy protection is combined with quality control
in [217],where an inference algorithm is designed to improve
the inference accuracy for the data transformed according to
differential privacy. In [123], privacy protection is combined
with incentive mechanism. Specifically, a reverse auction-
based incentive mechanism is designed when considering
the privacy requirement of different workers. Then, the data
collected via spatial crowdsourcing is published after trans-
formation through differential privacy.

7 Applications

Spatial crowdsourcing is closely tied to the physical world
and there have beenvarious real-world applications. This sec-
tion summarizes typical spatial crowdsourcing applications
into two categories: sharing economy-based urban services
and crowdsourced spatiotemporal data collection.

7.1 Sharing economy-based urban services

Sharing economy-based urban services refer to applications
such as delivery and onsite services crowdsourced to free-
lancers. In the context of spatial crowdsourcing, a task in
these applications is usually served by a single worker and
thus often involves no explicit quality control (i.e., result
aggregation). Popular applications include on-demand taxi
dispatching, ride sharing, food delivery and onsite microser-
vices.
On-demand taxi dispatching It is one of the earliest
successful spatial crowdsourcing applications. Passengers

appear dynamically and submit taxi requests to platforms
such asUber [17] andDidi Chuxing [4]. The platform assigns
taxis to passengers in real time to pick up passengers. Hence,
in terms of task assignment, on-demand taxi dispatching can
be modeled as a dynamic matching problem with diverse
objectives such as maximizing the total payoff or minimiz-
ing the average latency of passengers.
Ride sharing This application is an emerging extension of
on-demand taxi dispatching service often provided by the
same companies, e.g., Uber [17] and Didi Chuxing [4]. The
key issue of ride sharing is to schedule a route, which con-
sists of a sequence of pickup locations and delivery locations
for each passenger to minimize the total travel cost of the
drivers (i.e., workers) [158] or the average latency of the
passengers (i.e., requesters) [227]. In terms of task assign-
ment, ride sharing is often modeled as a dynamic planning
problem [40,119,158,211].
Food delivery Food delivery services such as Grubhub [10]
and Meituan [26] are similar to ride sharing in terms of
task assignment. Customers dynamically submit food deliv-
ery requests to the platform. The platform then determines
the price of the delivery requests for the requesters and the
schedules of the delivery requests for the couriers. Similarly,
food delivery services are often formulated as dynamic plan-
ning [154].
Onsite microservicesOnsite microservices are another suc-
cessful adoption of spatial crowdsourcing. Platforms such
as TaskRabbit [15] and Gigwalk [8] connect various domes-
tic services, e.g., house cleaning, with freelancers. Similar
to on-demand taxi dispatching, task assignment in onsite
microservices can be considered as a dynamic matching
problem.
Discussions Sharing economy for urban services often deal
with highly dynamic data at urban scale. To provide bet-
ter quality of services, more efficient, and effective task
assignment algorithms are needed. Sharing economy for
urban services usually apply the incentivemechanisms based
on supply-and-demand-aware models and provide certain
degree of privacy protection. Nevertheless, there is a grow-
ing trend to introduce additional incentive mechanisms into
these applications to consistently attract more users.

7.2 Crowdsourced spatiotemporal data collection

Crowdsourced spatiotemporal data collection refers to appli-
cations that crowdsource collectionof various spatiotemporal
information to citizens. In the context of spatial crowdsourc-
ing, a task in these applications is usually performed by
multiple workers and involves certain spatiotemporal data
processing. Tasks in this category vary in real-time require-
ment and degree of spatiotemporal data processing, but all
involve quality control to aggregate highly qualified results.
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Table 10 Categories of core issues in typical spatial crowdsourcing applications

Category Reference Task assignment Quality control Incentive mechanism Privacy protectiona

Sharing economy-based urban services

Taxi dispatching [4,17] Dynamic matching � Supply-and-demand-aware �

Ride sharing [158,211] Dynamic planning � Supply-and-demand-aware �

Food delivery [10,26] Dynamic planning � Supply-and-demand-aware �

Onsite microservices [8,15,164] Dynamic matching � Supply-and-demand-aware �

Spatiotemporal data collection

Event detection and labeling

POI labeling [117] Static matching Expectation maximization � �

Pollution detection [109,188] Static matching Aggregated diversity � �

Event detection [30,168] Dynamic matching Bayesian estimation � �

Map application

Map generation [62,107] Dynamic matching Aggregated diversity Quality-aware �

Speed estimation [116,155] Static matching Bayesian estimation � �

Road navigation [19,89] Static planning Aggregated diversity � �

Congestion alert [36] Dynamic matching Expectation maximization � �

Path selection [189,234] Static matching Expectation maximization � �

aSome applications claim that privacy protection is considered but the detailed techniques are not specified

Crowdsourced event detection and labeling It is natural to
crowdsource detecting and labeling of urban spots or events
to citizens. For instance, residents can contribute to POI
labeling in the neighborhood [117]. They can also report
noise pollution [188], air pollution [109] and weather con-
ditions [199] in the vicinity. Since such data are normally
provided by unprofessional workers using noisy sensors, it
is crucial to aggregate sensory data from workers to control
the quality of the detection or labeling tasks. Truth inference
is commonly used for quality control in crowdsourced event
detection and labeling [162,168].
Crowdsourced map applications Spatial crowdsourcing
can also be applied in more complex spatiotemporal data
collection and processing such as map generation, real-time
traffic speed estimation, and road navigation. For exam-
ple, OpenStreetMap [107] is already the world’s largest
crowdsourced mapping project that creates a free and collab-
oratively editable map of the world. Real-time traffic speed
in a map can be inferred by crowdsourcing speed estimation
of a portion of seed roads and jointly considering historical
speed information [116,155]. Crowdsourced road naviga-
tion is viable by collecting real-time traffic information, e.g.,
using Waze [19] and constructing a landmark scoring model
for route recommendation [89]. Some other functions in
map applications, such as alerting traffic congestion [36],
or answering path selection queries [189,234] could also be
crowdsourced by consulting nearby drivers and picking out
desirable answers. Quality control in these applications is
dedicated and sometimes is coupled with the underlying spa-
tiotemporal data processing process.

Discussions Table 10 summarizes the aforementioned appli-
cations in spatial crowdsourcing. Compared with the sharing
economy-based urban services, task assignment in crowd-
sourced spatiotemporal data collection depends on the spe-
cific data to collect and varies in the models. It can be
formulated as staticmatching (e.g., POI labeling [117]), static
planning (e.g., road navigation [89]), or dynamic matching
(e.g., map generation [107]). It is important for crowd-
sourced spatiotemporal data collection applications to attract
the highly qualified workers. Hence the incentive mecha-
nisms based on the quality-awaremodels are used tomotivate
workers. While some pioneer studies have proposed privacy
protection schemes for certain applications in this category
(e.g., pollution detection [162] andmap generation [62]), it is
unclear whether privacy protection methods suited for other
applications have been designed.

8 Open problems

In this section, we discuss some important open problems in
spatial crowdsourcing.
More effective task assignment algorithms Task assign-
ment is central to spatial crowdsourcing, yet its effectiveness
is still not satisfactory for many real-world applications.
Particularly, emerging applications such as on-demand taxi
dispatching and ride sharing require highly effective dynamic
matching and planning algorithms. Yet the competitive ratios
of the state-of-the-art algorithms for dynamic matching are
often no higher than 0.5 unless under some strong assump-
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tions (e.g., one-sided [121], arrival rate [120]). It also seems
hard to propose competitive solutions to dynamic task plan-
ning under extreme cases. In particular, the worst cases to
prove the hardness result are usually impractical, e.g.,with
the extremely short deadline [144,192]. Thus, existing stud-
ies (e.g., [119,158,192]) usually propose heuristics without
any theoretical guarantee. One opportunity to improve the
effectiveness of dynamic task assignment is that practical
applications may not strictly require instant assignments.
Therefore, it may be feasible to wait for a reasonably short
period and make global assignments on a batch basis. How-
ever, it remains open how to theoretically select the best
single batch or adapt the batch size in real time to notably
improve the effectiveness of task assignment algorithms.
Indices for spatial crowdsourced data Efficient spatial
crowdsourcing requires not only efficient algorithms but
also efficient data structures, e.g., indices. Indices for spatial
crowdsourced data need to be optimized for spatial queries
and frequent updates. Some indices (e.g., grid, R-tree [106],
quadtree [178] and k-d tree [49]) are proposed for spatial
queries. Others are proposed to handle the dynamics of spa-
tiotemporal data, such as 3D R-tree [193], HR-tree [165]
and TPR-tree [177]. Recently, Jonathan et al. [126] exploit
a pyramid multi-resolution index to speed up the retrieval of
workers in a given area. However, dedicated spatiotempo-
ral indices are overlooked in existing spatial crowdsourcing
algorithms. It is largely unexplored how to select or design
suitable spatiotemporal indices and co-optimize the end-to-
end efficiency of spatial crowdsourcing algorithms.
Benchmarks for spatial crowdsourcing Standardized
benchmarks are important for the continuous development
of spatial crowdsourcing research. There have been many
benchmarks for classical spatial datamanagement. For exam-
ple, DIMACS Implementation Challenge provides a set of
benchmark instances for various shortest path problems.
However, there is a lack of similar benchmarks for spatial
crowdsourcing. Although there are a few synthetic data gen-
erators for spatial crowdsourcing [198], the lack of public
real-world datasets still presents a challenge to the devel-
opment of spatial crowdsourcing. The reasons of such a
quandary are twofold. First, the owners of real data are usu-
ally commercial platforms that are not willing to share their
data. Secondly, although there are open-source spatial crowd-
sourcing platforms such as gMission [63] and MediaQ [25],
they cannot collect large amounts of data due to their limited
scales.

9 Conclusion

In this paper, we surveyed the state-of-the-art research
on spatial crowdsourcing, with comprehensive comparisons
between spatial crowdsourcing and general-purposed crowd-

sourcing in terms of challenges and techniques. We summa-
rized existing literature on spatial crowdsourcing algorithms
into four categories: task assignment, quality control, incen-
tive mechanism design, and privacy protection. Particularly,
for task assignment, we reviewed matching and planning
models in static and dynamic scenarios; for quality con-
trol, we discussed quality models of tasks/workers and result
aggregation techniques; for incentive mechanism design, we
presented posted pricemodels and auction-basedmodels; for
privacy protection, we offered a general privacy protection
framework and compared three types of data transformation
techniques. In addition, we studied emerging representative
spatial crowdsourcing applications and explained how they
are enabled by these techniques. Finally, we identified some
open problems for future research in this active research area.
We envision this survey as a timely reference and guideline
for researchers and practitioners in spatial crowdsourcing.
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